Chemical Engineering & Technology, Vol.36, No.4, 650-656, 2013
Upgrading of Simulated Syngas by Using a Nanoporous Silica Membrane Reactor
The permeance properties of a nanoporous silica membrane were first evaluated in a laboratory-scale porous silica membrane reactor (MR). The results indicated that CO, CO2, and N2 inhibited H2 permeation. Increased H2 permeability and selectivity were obtained when gas was transferred from the lumen side to the shell side. This was therefore selected as a suitable permeation direction. On this basis, upgrading of simulated syngas was experimentally investigated as a function of temperature (150300 degrees C), feed pressure (up to 0.4MPa), and gas hourly space velocity (GHSV), by using a nanoporous silica MR in the presence of a Cu/ZnO/Al2O3 catalyst. The CO conversion obtained with the MR was significantly higher than that with a packed-bed reactor (PBR) and broke the thermodynamic equilibrium of a PBR at 275300 degrees C and a GHSV of 2665h1. The use of a low GHSV and high feed pressure improved the CO conversion and led to the recovery of more H2.