- Previous Article
- Next Article
- Table of Contents
Chemical Engineering Communications, Vol.200, No.8, 1121-1147, 2013
MODIFIED PLANTAIN PEEL AS CELLULOSE-BASED LOW-COST ADSORBENT FOR THE REMOVAL OF 2,6-DICHLOROPHENOL FROM AQUEOUS SOLUTION: ADSORPTION ISOTHERMS, KINETIC MODELING, AND THERMODYNAMIC STUDIES
In this study, the feasibility of using modified plantain peel to remove 2,6-dichlorophenol from iaqueous solutions was investigated under batch mode. The effects of physical factors such as initial 2,6-dichlorophenol concentration, contact time, biosorbent particle size, biosorbent dosage and temperature on the removal process were evaluated. The results showed that biosorption of 2,6-dichlorophenol was dependent on these factors. The equilibrium biosorption data were analyzed by the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) adsorption isotherm models. The four tested isotherm models provided good fits to the experimental data obtained at 30 degrees C; however, the Freundlich isotherm model provided the best correlation (R2=0.9874) of the experimental data. The maximum monolayer biosorption capacity (Q max ) was found to be 14.25mg/g. The biosorption kinetics data of 2,6-dichlorophenol were analyzed by pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, and liquid film diffusion models. The five kinetic models fitted well to the biosorption kinetic data; however, the pseudo-second-order kinetic model gave the best fit when the biosorption mechanism was controlled by film diffusion. Thermodynamic quantities such as standard Gibbs free energy (G degrees), standard enthalpy (H degrees), standard entropy change of biosorption (S degrees), and activation energy (Ea) were evaluated, and it was found that the biosorption process was spontaneous, feasible, endothermic in nature and of dual nature, physisorption and chemisorption; however, the physisorption process was dominant. Therefore, modified plantain peel has potential for application as an effective bioadsorbent for removal of 2,6-dichlorophenol from aqueous solution.
Keywords:2;6-Dichlorophenol;Adsorption isotherms;Agricultural waste;Chemisorption;Kinetics;Plantain peel;Thermodynamic properties