화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.3, No.3, 471-481, September, 1992
아민을 리간드로 갖는 산소가교 팔라듐 착화합물의 반응성에 관한 연구
A Study on the Reactivity of Dioxygen Bridged Palladium Complexes Having Amine Ligands
초록
본 연구는 아민을 리간드로 갖는 산소가교 팔라듐 착화합물의 반응성에 관한 것이다. 이 경우에 합성한 산소 가교 팔라듐 착화합물은 산소원으로서 초과산화이온(O2 -)을 사용했다. 합성한 산소가교 팔라듐 착화합줄의 형태를 검토하기 위하여 벤젠 용매중에서 물, 메탄올, 아세트산과의 반응을 행하였다 그 결과 산소가교 팔라듐 착화합물은 이들과 반응하여 과산화수소(H2O2)를 발생하면서 각각 히드록시, 메톡시, 아세톡시가교 팔라듐 착화합물로 변환되었다. 또한 산소가교 팔라듐 착화합물은 치환 페놀류인 살리실알데히드, 8-히드록시퀴놀린 및 활성메틸렌 화합물인 아세틸아세톤, 디메틸말론산과 반응하여 과산화수소와 단핵 팔라듐 착화합물을 생성했다. 더욱 산소가교 팔라듐 착화합물은 아세톤과도 반응하여 아세토닐가교 팔라듐 착화합물과 과산화수소로 변환되었다. 이것은 착화합물 중의 배위산소가 과산화이온(O2 2- )이며, 강한 염기로서 작용하고 있음을 시사한다
This study is related to the reactivity of dioxygen bridged palladium complexes having amine ligands. New dloxygen bridged palladium complexes were prepared using superoxide ion(O2-) as an oxygen source. The reactions of dioxygen palladium complexes prepared in the study were examined in order to clarify the nature of the coordinated dioxygen. Treatments of a solution of the dioxygen bridged palladium complexes in benzene by water, methanol, acetic acid gave hydrogen peroxide(H2O 2) and hydroxy, methoxy, acetoxy- bridged palladium complexes, respectively. The dioxygen bridged palladium complexes reacted with substitution phenols of salicylaldehyde, 8-hydroxyquinoline and active mothylenes of acetylacetone, dimethyl malonate to afford mononuclear complexes of palladium and hydrogen peroxide. Furthermore, she dioxygen bridged palladium complexes changed to acetonyl bridged palladium complex and hydrogen peroxide reacting with acetone. The results suggest that dioxygen is coordinated as peroxo (O22-) in the complexes and behaves as a strong base.
  1. Otsuka S, Nakamura A, Tatsuno Y, J. Am. Chem. Soc., 91, 6994 (1969) 
  2. Otsuka S, Nakamura A, Tatsuno Y, Inorg. Chem., 11, 2058 (1972) 
  3. Henrici-Olive G, Olive S, Angew. Chem.-Int. Edit., 13, 29 (1974) 
  4. Ugo R, Conti F, Cenini S, Mason R, Robertson GB, Chem. Commun., 1498 (1968)
  5. Hayward PJ, Blake DW, Wilkinson G, Nyman CJ, J. Am. Chem. Soc., 92, 5873 (1970) 
  6. Cook CD, Jauhal GS, J. Am. Chem. Soc., 89, 3066 (1967) 
  7. Horn RW, Weissberger E, Collman JP, Inorg. Chem., 9, 2367 (1970) 
  8. Valentine J, Valentine D, Collman JP, Inorg. Chem., 10, 219 (1971) 
  9. Otsuka S, Nakamura A, Tatsuno Y, Chem. Commun., 836 (1967)
  10. Wilke G, Schott H, Heimbach P, Angew. Chem.-Int. Edit., 79, 62 (1967)
  11. Birk JP, Halpern J, Pickard AL, J. Am. Chem. Soc., 90, 4491 (1968) 
  12. Halpern J, Pickard AL, Inorg. Chem., 9, 2798 (1970) 
  13. Graham BW, Laing KR, Oconnor CJ, Ropper WR, J. Chem. Soc.-Dalton Trans., 1237 (1972)
  14. Otsuka S, Nakamura A, Tatsuno Y, Miki M, J. Am. Chem. Soc., 94, 3761 (1972) 
  15. Collman JP, Accounts Chem. Res., 1, 136 (1968) 
  16. Nyman CJ, Wilkinson G, Chem. Commun., 407 (1967)
  17. Hayward PJ, Blake DW, Nyman CJ, Wilkinosn G, Chem. Commun., 987 (1967)
  18. Nishinaga A, Nishizawa K, Tomita H, Matsuura T, J. Am. Chem. Soc., 99, 1287 (1977) 
  19. Nishinaga A, Tomita H, Matsuura T, Tetrahedron Lett., 2893 (1979) 
  20. Nishinaga A, Jpn. Chem. Lett., 273 (1975)
  21. Nishinaga A, Tojo T, Matsuura T, Chem. Commun., 896 (1974)
  22. Mimoun H, Bull. Soc. Chim. Fr., 1481 (1969)
  23. Chung PJ, J. Korea Chem. Soc., 28, 135 (1984)
  24. Chung PJ, J. Korea Chem. Soc., 30, 516 (1986)
  25. Cope AC, Kliegman JM, Friedrich EC, J. Am. Chem. Soc., 89, 287 (1967) 
  26. Cope AC, Friedrich EC, J. Am. Chem. Soc., 90, 909 (1968) 
  27. Chung PJ, J. Korean Ind. Eng. Chem., 3(1), 64 (1992)