Inorganic Chemistry, Vol.52, No.5, 2458-2465, 2013
X2Y2 Isomers: Tuning Structure and Relative Stability through Electronegativity Differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te)
We have studied the XYYX and X2YY isomers of the X2Y2 species (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te) using density functional theory at the ZORA-BP86/QZ4P level. Our computations show that, over the entire range of our model systems, the XYYX isomers are more stable than the X2YY forms except for X = F and Y = S and Te, for which the F2SS and F2TeTe isomers are slightly more stable. Our results also point out that the Y-Y bond length can be tuned quite generally through the X-Y electronegativity difference. The mechanism behind this electronic tuning is the population or depopulation of the pi* in the YY fragment.