Journal of Materials Science, Vol.48, No.9, 3347-3356, 2013
Rheologic and mechanical properties of multiwalled carbon nanotubes-reinforced poly(trimethylene terephthalate) composites
This paper investigates the rheologic and mechanical properties of melt-blended poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) composites and the effect of acid treatment of MWCNT on these properties. The microstructure of the composites was studied by SEM and TEM in terms of the dispersion state of the nanotubes and the polymer-nanotube interaction. Incorporation of MWCNTs into PTT matrix resulted in an increase in both complex viscosity and moduli than those of neat PTT. A dramatic increase in the melt viscosity of composites observed with loading of MWCNT in the range of 0.5 and 2 wt% showed the formation of interconnected network of MWCNT in the polymer matrix at a rheologic percolation threshold. Acid treatment of MWCNT showed significant effect on the rheologic properties of PTT and led to the enhancement of both complex viscosity and moduli due to strong interfacial interaction between acid-treated MWCNT and PTT matrix. The effect of acid treatment was also evident by mechanical properties of the PTT/MWCNT composites. The untreated MWCNT showed only increase in modulus of PTT matrix; whereas, after acid treatment, both tensile strength and modulus of PTT matrix enhanced significantly.