화학공학소재연구정보센터
Journal of Materials Science, Vol.48, No.12, 4356-4364, 2013
Effect of reheat temperature on continuous cooling bainite transformation behavior in low carbon microalloyed steel
The effect of reheat temperature on continuous cooling bainite transformation in a low carbon microalloyed steel was investigated using a dilatometer based on welding thermal simulation process. The variation of microstructure was analyzed in detail by means of optical microscope and transmission electron microscope (TEM). The results showed that the morphology of the main microstructure changes from polygonal ferrite to granular bainite with increasing reheat temperature at a given lower cooling rate. For the higher cooling rate, the microstructure is predominantly lath bainite irrespective of the reheat temperature. The specimens with the relatively fine austenite grain size have the lowest bainite start and finish temperatures among the simulated sub-zones of heat affected zone, which is consistent with the result of the bainite lath width size observed using the TEM. Meanwhile, although the prevailing type of impingement mode of transformation is anisotropic growth impingement for all heat treatment processes, the reheat temperature has some influence on the maximum transformation rate and effective activation energy of bainite transformation.