Journal of Physical Chemistry A, Vol.117, No.10, 2152-2159, 2013
Formylmethylene: The Triplet Ground State and the Lowest Singlet State
The ground triplet state and lowest singlet state of formylmethylene have been proposed as important intermediates in the Wolff rearrangement of alpha-diazo ketones into ketenes. The ground triplet state of formylmethylene has been examined experimentally, but the lowest singlet state has yet to be observed. We predict equilibrium geometries, energies, bonding, dipole moments, and harmonic vibrational frequencies for these two lowest states of formylmethylene at the cc-pVQZ CCSD(T) level of theory. The singlet-triplet energy difference [Delta E(S-T)) is quite sensitive to the level of theory. The highly accurate cc-pVQZ CCSD(T) level of theory yields the most reliable result of only 2.0 kcal mol(-1). An estimate based on the experimentally characterized CH2 molecule yields Delta E(S-T) = 1.27 kcal mol(-1). In addition, accurate quartic force fields have been determined at the cc-pVTZ CCSD(T) level of theory. Fundamental vibrational frequencies, anharmonic constants, and vibration-rotation coupling constants were determined using vibrational second-order perturbation theory (VPT2). Our results should aid in experimental detection and characterization of the lowest singlet state of formylmethylene, which is highly desirable for better understanding the mechanism of the Wolff rearrangement.