화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.10, 2947-2954, 2013
Interactions of Binuclear Ruthenium(II) Complexes with Oligonucleotides in Hydrogel Matrix: Enantioselective Threading Intercalation into GC Context
A stretched poly(vinyl alcohol) (PVA) film provides a unique matrix that enables also short DNA oligonucleotide duplex to be oriented and studied by linear dichroism (LD). This matrix further allows controlling DNA secondary structure by proper hydration (A or B form), and such humid films could potentially also mimic the molecular crowding in cellular contexts. However, early attempts to study intercalators and groove binders for probing DNA in PVA failed due to competitive matrix binding. Here we report the successful orientation in PVA of DNA oligonucleotide duplex hairpins with thread-intercalated binuclear complex [mu-(11,11'-bidppz)(phen)(4)Ru-2](4+) and how LD depends on oligonucleotide sequence and metal center chirality. Opposite enantiomers of the ruthenium complex, Delta Delta and Lambda Lambda, were investigated with respect to enantioselectivity toward GC stretches as long as 22 bp. LD, supported by emission kinetics, reveals that threading intercalation occurs only with Delta Delta whereas Lambda Lambda remains externally bound, probably in either or both of the grooves of the GC-DNA. Enantioselective binding properties of sterically rigid DNA probes such as the ruthenium complexes could find applications for targeting nucleic acids, e.g., to inhibit transcription in therapeutic context such as treatment of malaria or cancer.