화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.10, 3028-3039, 2013
Block Copolymer Micelles as Nanoreactors for Self-Assembled Morphologies of Gold Nanoparticles
Self-assembled gold (Au) nanopartides (NPs) were synthesized in micelle surface cavities of a L121 block HPS) and sugar surfactants (OG and DDM) in aqueous phase polymer in the presence of zwitterionic (viz. DPS, TPS, and at 70 degrees C by using the surface cavities of L121 as reducing sites for converting Au(III) into Au(0). All reactions were monitored simultaneously by UV-visible spectroscopy to determine the growth kinetics in gold nucleating centers on the basis of surface plasmon resonance that also helped in tracing the structure micelle transitions over a wide temperature range of 10-70 degrees C. The surfactant/L121 mole ratio was changed systematically from 0.5 to 2.5 by keeping L121 and HAuCl4 concentrations constant at 10 and 0.25 mM, respectively, to determine the shape and size of the micelles and their relation to the self-assembled behavior of Au NPs. TEM studies were used to have a direct insight into the morphology of micelle templates and their shape and size for self assembled NPs. L121 along with DPS (C12 carbon chain) produced well-defined micelles loaded with tiny NPs of 3-6 nm in the L121-rich region of the mixture, while large flower-like compound micelles with a clear core shell morphology were produced in the DPS-rich region. TPS and HPS (C14 and C16 hydrocarbon chains, respectively) with stronger hydrophobicity than DPS also produced almost similar micelles loaded with tiny NPs in the L121-rich region, but they disappear in the surfactant-rich region. Replacement of zwitterionic with ionic surfactants did not yield micelle templates for self-assembled NPs. Results conclude that well-defined micelles of L121 are the fine templates for self-assembled NPs that can only be achieved in the presence of a neutral surfactant with low concentration and low hydrophobicity.