화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.8, 3095-3103, 2013
Visible Light-Driven O-2 Reduction by a Porphyrin-Laccase System
Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO2 or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP4+) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 mu mol L-1 s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP4+ which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) approximate to 10(7) s(-1) M-1. The long-lived triplet excited state of the ZnTMPyP4+ (tau(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, phi(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.