Journal of the American Chemical Society, Vol.135, No.9, 3576-3582, 2013
Steering On-Surface Polymerization with Metal-Directed Template
On-surface polymerization represents a novel bottom-up approach for producing macromolecular structures. To date, however, most of the structures formed using this method exhibit a broad size distribution and are disorderly adsorbed on the surface. Here we demonstrate a strategy of using metal-directed template to control the on-surface polymerization process. We chose a bifunctional compound which contains pyridyl and bromine end groups as the precursor. Linear template afforded by pyridyl-Cu-pyridyl coordination effectively promoted Ullmann coupling of the monomers on a Au(111) surface. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. We used scanning tunneling microscopy and kinetic Monte Carlo simulation to gain insights into the metal-directed polymerization at the single molecule level. The results reveal that the polymerization process profited from the rich chemistry of Cu which catalyzed the C-C bond formation, controlled the size of the macromolecular products, and organized the macromolecules in a highly ordered manner on the surface.