Langmuir, Vol.29, No.6, 1732-1737, 2013
Layer-by-Layer Assembly of a Streptavidin-Fibronectin Multilayer on Biotinylated TiOx
The biomodification of surfaces, especially titanium, is an important issue in current biomedical research. Regarding titanium, it is also important to ensure a specific protein modification of its surface because here protein binding that is too random can be observed. Specific nanoscale architectures can be applied to overcome this problem. As recently shown, streptavidin can be used as a coupling agent to immobilize biotinylated fibronectin (bFn) on a TiOx surface. Because of the conformation of adsorbed biotinylated fibronectin on a streptavidin monolayer, it is possible to adsorb more streptavidin and biotinylated fibronectin layers. On this basis, an alternating protein multilayer can be built up. In contrast to common layer-by-layer technology, in this procedure the mechanism of layer adsorption is very specific because of the interaction of biotin and streptavidin. In addition, we showed that the assembly of this multilayer system and its stability are dependent on the degree of labeling of biotinylated fibronectin. Hence we conclude that it is possible to build up well-defined nanoscale protein architectures by varying the degree of labeling of biotinylated fibronectin.