Langmuir, Vol.29, No.13, 4328-4334, 2013
Light Reflection Control in Biogenic Micro-Mirror by Diamagnetic Orientation
As has become known, most materials, such as proteins and DNA, show orientation under strong magnetic fields. However, the critical threshold for the magnetic field of the magnetomechanical phenomena is still unknown. We demonstrate that a thin micro-mirror from a fish scale with high reflectivity exhibits a distinct magnetic response at 100 mT. A dramatic event under a magnetic field is the decrease of light scattering from guanine crystals as well as rapid rotation against the applied magnetic field. Enhancement of light scattering intensity is also observed when the three vectors of light incidence, magnetic field, and observation are orthogonally directed. The results indicate that biogenic guanine crystals have a large diamagnetic anisotropy along the surface parallel and normal directions. The micrometer to submicrometer scale of thin biogenic plates can act as a noninvasively, magnetically controlled micro-mirror for light irradiation control in the micrometer-scale region.