화학공학소재연구정보센터
Langmuir, Vol.29, No.13, 4381-4387, 2013
Remotely Controlled Diffusion from Magnetic Liposome Microgels
The reversible, temperature-dependent change in the permeability of a phospholipid bilayer has been used for controlling the diffusion rate of encapsulated molecular payload from liposomes. Liposomes were preloaded with a fluorescent dye and immobilized in calcium alginate hydrogel microparticles that also contained iron oxide nanoparticles. The composite microparticles were produced by a drop-on-demand inkjet method. The ability of iron oxide nanoparticles to locally dissipate heat upon exposure to a radio-frequency (RF) alternating magnetic field was used to control the local temperature and therefore diffusion from the liposomes in a contactless way using an RF coil. Several different release patterns were realized, including repeated on-demand release. The internal structure of the composite alginate liposome magnetite microparticles was investigated, and the influence of microparticle concentration on the heating rate was determined. In order to achieve a temperature rise required for the liposome membrane melting, the concentration of alginate beads should be at least 25% of their maximum packing density for the nanoparticle concentration and specific absorption rate used.