화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.4, No.1, 171-177, March, 1993
제염용액내 유기산이 금속이온 이온교환에 미치는 영향
The Effect of Organic Acids in Decontamination Solution on Ion Exchange of Metal Ions
초록
원자로 냉각계통의 방사성 오염물질을 제거하기 위한 제염공정에서 유기산에 용해된 금속이온들은 이온교환 수지를 통과하면서 제거된다. 그러나 제염용액내 유기산들은 용액내 금속이온과 착화합물을 형성하여 이온교환수지에 대한 친화도를 감소시킨다. 이같은 관점에서 착화합물 형성이 이온교환공정에 미치는 영향 해석을 위해 코발트와 철 이온을 대상으로 Amberlite IRN-77 양이온수지와의 이온교환실험을 수행하였다. 실험결과에서 화학제염제로 사용된 유기산 가운데 EDTA는 철 이온보다 코발트 이온과 강한 착화합물을 형성하여 코발트 이온의 수지에 대한 이온교환용량을 현저히 감소시켜 주는 성분으로 나타났다. 반면에, Oxalic Acide와 Citric Acide의 영향은 미미하였다. 또한, 실험결과로부터 이들 금속이온 들에 대한 단일 성분계 및 2성분계 비선형 평형식을 결정하였다.
In decontamination process to remove radioactive materials of reactor cooling system, the metal ions dissolved by organic acids in decontamination solution are separated by use of ion exchange resin in the column. However, organic acids in decontamination solution decrease the apparent affinity of the resin to metal ions. In light of this, some experiments were carried out on the Amberlite IRN-77 cation resin with cobalt and iron to gain a better understanding of the complexation effects on the ion exchange process. Experimental results showed that EDTA among organic acids used as chemical decontaminants predominantly caused reduction of ion exchange capacity of cobaltous ion to resin since this reagent formed the complex with the cobaltous ion stronger than that with the ferrous ion. In contrast, the effects of oxalic acid and citric acid were found to be negligible. And, single and two-component nonlinear equilibrium relationships of the metal ions were established using experimental data.
  1. Choppin GR, Dillon RL, "Literature Review of Dilute Chemical Decontamination Process for Water-Cooled Nuclear Reactors," EPRI-NP-1033 (1979)
  2. Lanza GO, Weisgerber P, J. Eur. Sci. Technol., 1, 1225 (1979)
  3. Perrigo LD, Divine JR, "Decontamination Methods," Pacific Northwest Laboratories-SA-7770 (1980)
  4. NEA Group: "Decontamination Methods as Related to Decommissioning of Nuclear Facilities," NEA (1981)
  5. Shaw RA, Naughton MD, Miller AD, "Radiation Exposure, Radiation Control and Decontamination," in Decontamination and Decommissioning of Nuclear Facilities, P. 679, Plenum Press (1980)
  6. Zimmerman GJ, Smee JL, "Development of an Improved Reagent for the CAN-DECON Decontamination Reagents by Cation Exchanges Resin," AECL, WNRE-288 (1976)
  7. Smee JL, "Development of an Improved Reagent for the CAN-DECON Decontamination Proccess; Part I, Some Theoretical Considerations," AECL, WNRE-239 (1975)
  8. Smee JL, "Dissolution Characteristics of Metal Oxides in Water Cooled Reactors," in Decontamination and Decommissioning of Nuclear Facilities, p. 281, Plenum Press (1980)
  9. Ringbom A, "Complexation in Analytical Chemistry," Chemical Analysis, Vol. VI, Interscience Publishers, New York (1963)
  10. Swee CF, Richard GR, Ind. Eng. Chem. Fundam., 18, 63 (1979) 
  11. Slejko FL, "Adsorption Technology, A Step by Step Approach to Process Evaluation and Application," Chap. 1, Marcel Dekker, Inc. (1985)
  12. Pettit PT, "The CAN-DECON Decontamination with Nutek L-106," AECL, CRNL-1291 (1975)
  13. Fritz W, Schluender EU, Chem. Eng. Sci., 29, 1279 (1974) 
  14. Liapis AI, Rippon DWT, Chem. Eng. Sci., 32, 619 (1977) 
  15. Radke CJ, Prausnitz JM, Ind. Eng. Chem. Fundam., 11, 445 (1972) 
  16. "Rohm and Hass Ion Exchange Resins, Laboratory-Guide," Rohm and Hass Co. (1988)
  17. Barry BJ, "Colorimetric Determination of Iron in CAN-DECON Solution Using o-Phenanthroline," AECL, Private Memorandum, Jan. 19 (1984)
  18. Pronin AY, Musaev SK, Chmutov KV, Russ. J. Phys. Chem., 40, 638 (1969)