화학공학소재연구정보센터
Materials Research Bulletin, Vol.48, No.2, 352-356, 2013
Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics
Significant efforts are being devoted to the development of multifunctional thin-film heterostructures and nanostructured material architectures for components with novel applications of superconductivity, multiferroicity, solar photocatalysis and energy conversion. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible high efficiency and economically viable alternatives to planar photovoltaic thin-film architectures. By exploiting phase-separated self-assembly, here we present advances in a vertically oriented two-component system that offers potential for future development of nanostructured thin film solar cells. Through a single-step deposition by magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented nanopillars of n-type TiO2 and p-type Cu2O. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct TiO2-Cu2O interfaces (i.e., needed for possible active p-n junctions), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This high-quality materials system could lead to photovoltaic devices that can be optimized for both incident light absorption and carrier collection. Published by Elsevier Ltd.