화학공학소재연구정보센터
Separation Science and Technology, Vol.48, No.9, 1339-1348, 2013
Adsorption of Crystal Violet From Aqueous Solution by Citric Acid Modified Rice Straw: Equilibrium, Kinetics, and Thermodynamics
Rice straw, an abundant, lignocellulosic agricultural residue was thermochemically modified with citric acid to develop a biodegradable cationic adsorbent. The application potential of the prepared adsorbent to remove hazardous Crystal Violet dye from its aqueous solution was investigated. The morphological and chemical characteristics of the adsorbent were established by scanning electron microscopy (SEM), surface area, and porosity analysis by the BET (Brunauer, Emmett, and Teller) nitrogen adsorption method and Fourier transform infrared (FTIR) spectroscopy. Batch adsorption studies were carried out as a function of solution pH, adsorbent dose, initial dye concentration, and temperature, in order to get insights into the effect of these independent parameters on the adsorption process. The Langmuir, Freundlich, and DubininRadushkevich models were used to describe the equilibrium adsorption data. The sorption mechanism was also evaluated in terms of kinetics and thermodynamics. The adsorption equilibrium data was well described by the Langmuir isotherm model. The adsorption process followed the pseudo-second-order rate kinetics. Thermodynamic study showed spontaneous and exothermic nature of the adsorption process.