Transport in Porous Media, Vol.98, No.1, 193-208, 2013
Effects of Flow Velocity and Nonionic Surfactant on Colloid Straining in Saturated Porous Media Under Unfavorable Conditions
Knowledge of colloid straining mechanism in porous media is of importance for protecting groundwater from being contaminated by biocolloids (e.g., bacteria and protozoa) and by contaminants whose transport can be facilitated by mobile particles. This study examined effects of flow velocity on colloid straining in porous media under unfavorable chemical conditions. Saturated column experiments were conducted using glass beads as collector and a carboxylate-modified polystyrene latex microsphere as model colloid. To unambiguously examine colloid straining mechanisms, attachment was minimized by extensively cleaning the collectors and adopting deionized water as solution. Results show that increasing flow velocity decreases colloid straining under unfavorable chemical conditions, in agreement with to theoretical finding in literature. This study additionally examined effects of nonionic surfactant (Triton X-100) on colloid straining in porous media under unfavorable chemical conditions. Results show that the addition of Triton X-100 decreases colloid straining and the decrease is enhanced by increasing the concentration of Triton X-100.