화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.7, 1359-1367, July, 2013
Viruses as self-assembled nanocontainers for encapsulation of functional cargoes
E-mail:
Viruses naturally exhibit an incredible variety of sophisticated nanostructures, which makes them ideal biological building blocks for nanoengineered material research. By mimicking their spontaneous assembly process, tremendous advances have been made towards utilizing virus and virus-like particles (VLPs) as protein cages, scaffolds, and templates for nanomaterials in the last few years. This review outlines recent progress in the field of bionanotechnology in which viruses are introduced to encapsulate various functional cargoes in a precise and controlled fashion. The encapsulation mechanisms are summarized into three main strategies: electrostatic interaction, chemical conjugation, and covalent attachment by genetic manipulation. The combination with chemical modification and genetic engineering heralds a brilliant future for fabrication of functional nanomaterials. These well-defined architectures will find attractive applications in biosensing, drug delivery, enzyme confinement, light-harvesting system, and pharmaceutical therapy.
  1. Soto CM, Ratna BR, Curr. Opin. Biotechnol., 21, 426 (2010)
  2. Kim JM, Chang SM, Muramatsu H, Isao K, Korean J. Chem. Eng., 28(4), 987 (2011)
  3. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y, Angew. Chem. Int. Ed., 43, 2527 (2004)
  4. Kim KK, Kim R Kim SH, Nature., 394, 595 (1998)
  5. Domingo GJ, Orru S, Perham RN, J. Mol. Biol., 305, 259 (2001)
  6. Rong J, Niu Z, Lee LA, Wang Q, Curr. Opin. Colloid Interface Sci., 16, 441 (2011)
  7. Pokorski JK, Steinmetz NF, Mol. Pharm., 8, 29 (2011)
  8. Lee G, Cho YS, Park S, Yi GR, Korean J. Chem. Eng., 28(8), 1641 (2011)
  9. Douglas T, Young M, Science., 312, 873 (2006)
  10. Kim KT, Meeuwissen SA, Nolte RJ, van Hest JC, Nanoscale., 2, 844 (2010)
  11. Koudelka KJ, Manchester M, Curr. Opin. Chem. Biol., 14, 810 (2010)
  12. Knipe DM, Howley PM, Fields Virology, 5th Ed., Lippincott Williams & Wilkins, Philadelphia (2007)
  13. Caspar DL, Klug A, Cold Spring Harb Symp. Quant. Biol., 27, 1 (1962)
  14. Hemminga MA, Vos WL, Nazarov PV, Koehorst RB, Wolfs CJ, Spruijt RB, Stopar D, Eur. Biophys. J., 39, 541 (2010)
  15. Gubser C, Hue S, Kellam P, Smith GL, J. Gen. Virol., 85, 105 (2004)
  16. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE, Structure., 3, 63 (1995)
  17. Tama F, Brooks CL, J. Mol. Biol., 318, 733 (2002)
  18. Valegard K, Liljas L, Fridborg K, Unge T, Nature., 36, 345 (1990)
  19. Parker MH, Casjens S, Prevelige PE, J. Mol. Biol., 281, 69 (1998)
  20. Teschke CM, McGough A, Thuman-Commike PA, Biophys. J., 84, 2585 (2003)
  21. Tang L, Nat. Struct. Biol., 8, 77 (2001)
  22. Klug A, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 531 (1999)
  23. Demir M, Stowell MH, Nanotechnology., 13, 541 (2002)
  24. Bancroft JB, Hiebert E, Bracker CE, Virology., 39, 924 (1969)
  25. Li F, Zhang ZP, Peng J, Cui ZQ, Pang DW, Li K, Wei HP, Zhou YF, Wen JK, Zhang XE, Small., 5, 718 (2009)
  26. Ren Y, Wong SM, Lim LY, J. Gen. Virol., 87, 2749 (2006)
  27. Ma Y, Nolte RJ, Cornelissen JJ, Adv. Drug Deliv. Rev., 64, 811 (2012)
  28. Aniagyei SE, DuFort C, Kao CC, Dragnea B, J. Mater.Chem., 18, 3763 (2008)
  29. Douglas T, Young M, Nature, 393(6681), 152 (1998)
  30. Sikkema FD, Comellas-Aragones M, Fokkink RG, Verduin BJ, Cornelissen JJ, Nolte RJ, Org. Biomol. Chem., 5, 54 (2007)
  31. Brasch M, Cornelissen JJ, Chem. Commun., 48, 1446 (2012)
  32. Shenton W, Douglas T, Young M, Stubbs G, Mann S, Adv. Mater., 11(3), 253 (1999)
  33. Daniel MC, Tsvetkova IB, Quinkert ZT, Murali A, De M, Rotello VM, Kao CC, Dragnea B, ACS Nano., 4, 3853 (2010)
  34. Loo L, Guenther RH, Lommel SA, Franzen S, J. Am. Chem. Soc., 129(36), 11111 (2007)
  35. Comellas-Aragones M, Engelkamp H, Claessen VI, Sommerdijk NA, Rowan AE, Christianen PC, Maan JC, Verduin BJ, Cornelissen JJ, Nolte RJ, Nat. Nanotechnol., 2, 635 (2007)
  36. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T, Adv. Mater., 19(8), 1025 (2007)
  37. Schlick TL, Ding ZB, Kovacs EW, Francis MB, J. Am. Chem. Soc., 127(11), 3718 (2005)
  38. Kovacs EW, Hooker JM, Romanini DW, Holder PJ, Berry KE, Francis MB, Bioconjug. Chem., 18, 1140 (2007)
  39. Zhao Q, Chen W, Chen Y, Zhang L, Zhang J, Zhang Z, Bioconjug.Chem., 22, 346 (2011)
  40. Lee LA, Niu Z, Wang Q, Nano Res., 2, 349 (2009)
  41. Minten IJ, Hendriks LJA, Nolte RJM, Cornelissen JJLM, J. Am. Chem. Soc., 131(49), 17771 (2009)
  42. Kang S, Uchida M, O'Neil A, Li R, Prevelige PE, Douglas T, Biomacromolecules, 11(10), 2804 (2010)
  43. Tong GJ, Hsiao SC, Carrico ZM, Francis MB, J. Am. Chem. Soc., 131(31), 11174 (2009)
  44. Hung CW, RNA packaging and gene delivery using Tobacco mosaic virus pseudo virions, Ph. D. Thesis, University of Maryland, U.S. (2008)
  45. Ohtake N, Niikura K, Suzuki T, Nagakawa K, Mikuni S, Matsuo Y, Kinjo M, Sawa H, Ijiro K, Chembiochem., 11, 959 (2010)
  46. Minten IJ, Claessen VI, Blank K, Rowan AE, Nolte RJ, Cornelissen JJ, Chem. Sci., 2, 358 (2011)
  47. Glasgow JE, Capehart SL, Francis MB, Tullman-Ercek D, ACS Nano., 6, 8658 (2012)
  48. Jung B, Rao AL, Anvari B, ACS Nano., 5, 1243 (2011)
  49. Miller RA, Presley AD, Francis MB, J. Am. Chem. Soc., 129(11), 3104 (2007)
  50. Endo M, Fujitsuka M, Majima T, Chemistry., 13, 8660 (2007)
  51. Klem MT, Young M, Douglas T, J. Mater. Chem., 18, 3821 (2008)
  52. Su Z, Wang Q, Angew. Chem. Int. Ed. Eng., 49, 10048 (2010)
  53. Wang Q, Lin T, Tang L, Johnson JE, Finn MG, Angew.Chem. Int. Ed., 41, 459 (2002)
  54. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG, J. Am. Chem. Soc., 125(11), 3192 (2003)
  55. Steinmetz NF, Nanomedicine., 6, 634 (2010)