Korean Journal of Chemical Engineering, Vol.30, No.7, 1403-1409, July, 2013
Phase-change core/shell structured nanofibers based on eicosane/poly(vinylidene fluoride) for thermal storage applications
E-mail:
We fabricated eicosane/poly(vinylidene fluoride) (PVDF) core/shell nanofibers by melt coaxial electrospinning as potential heat-storage applications. Eicosane, a hydrocarbon with melting point near the human body temperature and high latent heat, was chosen as the core material. Melted eicosane and PVDF solutions were coaxially electrospun using a double spinneret, in which melted eicosane was fed at 0.090-0.210 mL/h while the feeding rate of PVDF solution was maintained constant at 1.500 mL/h. The applied voltage and working distance were maintained
constant at 12 kV and 17 cm, respectively. Good core/shell structure of nanofibers was observed at core feed rates of 0.090-0.180mL/h by transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis values indicated good thermal stability and high energy-storage capacity of the obtained nanofibers. The highest amount of eicosane encapsulated in the electrospun core/shell nanofibers reached 32.5 wt% at core feed rate 0.180 mL/h and had a latent heat of 77 J/g at melting point 39.2 ℃. These shape-stabilized core/shell composite nanofibers showed good thermoregulating properties and had sufficiently high tensile strength for potential energy-storage applications, especially in smart textiles.
Keywords:Melt Electrospinning;Coaxial Electrospinning;Phase-change Material;Eicosane;Nanofiber;Energy Storage
- Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S, Energy Conv. Manag., 45(9-10), 1597 (2004)
- Belen Z, Jose MM, Luisa FC, Harald M, Appl. Therm. Eng., 23, 251 (2003)
- Ravindra K, Manoj KM, Rohitash K, Deepak G, Sharma PK, Tak BB, Meena SR, Def. Sci. J., 61, 576 (2011)
- Mondal S, Appl. Therm. Eng., 28, 1536 (2008)
- Demirbas MF, Energy Source, Part B., 1, 85 (2006)
- Chang CC, Tsai YL, Chiu JJ, Chen H, J. Appl. Polym. Sci., 112(3), 1850 (2009)
- Sari A, Alkan C, Karaipekli A, Uzun O, Sol. Energy., 83, 1757 (2009)
- Sanchez-Silva L, Tsavalas J, Sandberg D, Sanchez P, Rodriguez JF, Ind. Eng. Chem. Res., 49(23), 12204 (2010)
- Yang Z, Wei Z, Leping L, Wujun L, Yi X, Adv. Sci. Lett., 4(3), 933 (2011)
- Sanchez L, Sanchez P, Lucas A, Carmona M, Rodriguez JF, Colloid. Polym. Sci., 285(12), 1377 (2007)
- Sanchez P, Sanchez-Fernandez MV, Romero A, Rodriguez JF, Sanchez-Silva L, Thermochim. Acta, 498(1-2), 16 (2010)
- Zheng LX, Cheng TZ, Long ZG, Xian SL, Tao Z, Chinese J. Chem., 22, 411 (2004)
- Shin Y, Yoo DI, Son K, J. Appl. Polym. Sci., 96(6), 2005 (2005)
- Shin Y, Yoo DI, Son K, J. Appl. Polym. Sci., 97(3), 910 (2005)
- Shim H, McCullough EA, Jones BW, Text. Res. J., 71(6), 495 (2001)
- Chen C, Wang L, Huang Y, Mater. Lett., 62, 3515 (2008)
- Chen CZ, Wang LG, Huang Y, Chem. Eng. J., 150(1), 269 (2009)
- Chen CZ, Wang L, Huang Y, Polymer, 48(18), 5202 (2007)
- Alay S, Gode F, Alkan C, Fibers and Polymers., 11(8), 1089 (2010)
- Nguyen TTT, Lee JG, Park JS, Macromol. Res., 19(4), 370 (2011)
- Do CV, Nguyen TTT, Park JS, Sol. Energy Mater. Sol.Cells., 104, 131 (2012)
- McCann JT, Marquez M, Xia Y, Nano Lett., 6, 2868 (2006)
- Salaun F, Devaux E, Bourbigot S, Rumeau P, Text. Res. J., 80(3), 195 (2010)
- Deveci SS, Basal G, Colloid. Polym. Sci., 287(12), 1455 (2009)
- Basal G, Deveci SS, Yalcin D, Bayraktar O, J. Appl. Polym. Sci., 121(4), 1885 (2011)
- Zheng LX, Cheng TZ, Long ZG, Xian SL, Tao Z, Chinese J. Chem., 22, 411 (2004)
- Diaz JE, Barrero A, Marquez M, Loscertales IG, Adv. Funct. Mater., 16(16), 2110 (2006)
- Alkan C, Sari A, Karaipekli A, Uzun O, Sol. Energy Mater. Sol. Cells, 93(1), 143 (2009)