화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.7, 788-792, July, 2013
Quantifying the fluid volumes in paper microfluidic devices for dry eye test
E-mail:
This article described the development of a simple method for quantifying the flow of fluids in paper microfluidic devices with varying fluidic channel thicknesses. Microfluidic channels in paper were formed when the hydrophilic paper was patterned with a photosensitive polymer or wax materials that created hydrophobic walls through the entire thickness of the paper. Fluid distribution rates through the paper were increased with the decreasing thickness of the hydrophilic channels. The developed paper microfluidic device exhibited a consistent linear relationship between the wicked distance in the paper and the volume of fluids. The sensitivity of the device was as low as 0.2 μL of the testing fluid volume. Based on the consistent performance of quantifying fluid volume, the paper microfluidic device would enable more accurate and sensitive diagnosis than current dry eye tests that use capillary force for liquid imbibitions.
  1. Ali MM, Aguirre SD, Xu Y, Filipe CDM, Pelton R, Li Y, Chem. Commun., 43, 6640 (2007)
  2. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM, Lab Chip, 8, 2146 (2008)
  3. Noh H, Phillips S, Anal. Chem., 82, 8071 (2010)
  4. Noh H, Phillips S, Anal. Chem., 82, 4181 (2010)
  5. Li X, Tian JF, Nguyen T, Shen W, Anal. Chem., 80, 9131 (2008)
  6. Martinez AW, Phillips ST, Butte MJ, Whitesides GM, Angew. Chem.-Int. Edit., 46, 1318 (2007)
  7. Martinez AW, Phillips ST, Carrilho E, Thomas SW, 3rd, Sindi H, Whitesides GM, Anal. Chem., 80, 3699 (2008)
  8. Martinez A, Phillips S, Whitesides G, Proc. Natl. Acad. Sci. U.S.A., 105, 19606 (2008)
  9. Carrilho E, Phillips ST, Whitesides G, Anal. Chem., 81, 7091 (2009)
  10. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M, Weigl B, Nature, 442, 412 (2006)
  11. Simpson T, Situ P, Jones L, Fonn D, Optom. Vis. Sci., 85, 692 (2008)
  12. Doughty M, Fonn D, Richter D, Simpson T, Caffrey B, Gordon K, Optom. Vis. Sci., 74, 624 (1997)
  13. Lemp M, Ocul. Surf., 5, 75 (2007)
  14. Korb D, Cornea, 19, 483 (2000)
  15. Cho P, Optom. Vis. Sci., 70, 804 (1993)
  16. Tomlinson A, Blades K, Pearce E, Optom. Vis. Sci., 78, 142 (2001)
  17. Saleh TA, McDermott B, Bates AK, Ewings P, Eye (Lond), 20, 913 (2006)
  18. Jeon SH, Kim US, Jeon WJ, Shin CB, Hong SR, Choi IH, Lee SS, Yi JH, Macromol. Res., 17(3), 192 (2009)
  19. Song SM, Lee KY, Macromol. Res., 14(2), 121 (2006)
  20. Bohnert JL, Horbett TA, Ratner BD, Royce FH, Invest. Ophth. Vis. Sci., 29, 362 (1988)
  21. Washburn E, Phys. Rev., 27, 273 (1923)
  22. Washburn E, Proc. Natl. Acad. Sci. U.S.A., 7, 115 (1921)
  23. Kissa E, Tex. Res. J., 66, 660 (1996)
  24. Bico J, Thiele U, Quere D, Colloids Surf. A: Physicochem. Eng. Asp., 206, 41 (2002)
  25. Van Oss CJ, Giese RF, Li Z, Murphy K, Norris J, Chaudhury MK, Good RJ, J. Adhes. Sci. Technol., 6, 413 (1992)
  26. Zhmud BV, Tiberg F, Hallstensson K, J. Colloid Interface Sci., 228(2), 263 (2000)
  27. Lamberts D, Foster C, Perry H, Arch. Ophthalmol., 97, 1082 (1979)
  28. Halberg G, Berens C, Am. J. Ophthalmol., 51, 840 (1961)
  29. Tomlinson A, Blades K, Pearce E, Optom. Vis. Sci, 78, 142 (2001)