Polymer(Korea), Vol.37, No.4, 526-532, July, 2013
폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 물리적 분산 방법에 따른 물성
Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites
E-mail:
초록
라텍스 기법으로 제조한 폴리스티렌(PS)/탄소나노튜브(CNT) 나노복합재료의 CNT 분산 방법에 따른 유변물성과 전기 전도도를 비교하였다. PS/CNT 나노복합재료는 PS 입자와 CNT를 분산시킨 후 동결건조하여 제조하였다. 본 연구에서는 화학적 개질시 나타나는 CNT의 고유 물성 저하를 방지하기 위하여 sodium dodecylsulfate(SDS)를 첨가하는 방법과 polyvinyl pyrrolidone(PVP)으로 CNT를 감싸는 방법의 물리적 분산법을 적용하였다. 라텍스 기법에 적용한 물리적 분산 방법은 CNT의 분산에 매우 효과적이었다. SDS를 첨가한 경우는 PVP로 감싼 CNT를 사용하여 제조한 경우에 비해 나노복합재료의 유변물성의 증가폭이 낮은데 이는 저분자량인 SDS를 첨가로 인해 매트릭스의 물성이 감소하기 때문이다. CNT를 SDS로 분산시킨 나노복합재료와 PVP로 감싼 CNT를 사용한 나노복합재료의 전기적 임계점은 각각 0.23과 0.90 wt%로 나타났다. PVP로 CNT를 감싼 경우가 전기 전도도 향상 효과가 낮은데 이는 감싸고 있는 절연성의 PVP가 CNT간의 전기적 연결을 억제하기 때문이다.
The effect of CNT dispersion method on rheological and electrical properties of polystyrene/carbon nanotube (PS/CNT) nanocomposites via latex technology was compared. The nanocomposites were prepared through freeze-drying the dispersed suspension comprised of CNTs and PS particles. In this study, physical dispersion method, either sodium dodecylsulfate (SDS) addition or polyvinyl pyrrolidone (PVP) wrapping, was employed to prevent the deterioration of intrinsic properties of CNT caused by chemical modification. The physical method applied to latex technology was very effective in CNT dispersion. With SDS addition, the enhancement of rheological properties was low compared to PVP wrapping because the properties of matrix were deteriorated due to the incorporation of low molecular weight SDS. The
electrical percolation threshold of PS/SDS-stabilized CNT and PS/PVP-wrapped CNT nanocomposites was 0.23 and 0.90 wt%, respectively. The enhancement of electrical conductivity was low in the case of PVP wrapping because the non-conducting PVPs wrapped around CNT restricted the electrical connection between CNTs.
Keywords:nanocomposite;carbon nanotube;physical dispersion;rheological properties;electrical percolation threshold.
- Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
- Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MJ, Phys. Rev. B., 58, 14013 (1998)
- Hilding J, Grulke EA, Zhang ZG, Lockwood F, J.Dispersion Sci. Technol., 24, 1 (2003)
- Kang MH, Noh WJ, Woo DK, Lee SJ, Polym.(Korea), 36(3), 364 (2012)
- Ntim SA, Sae-Khow O, Witzmann FA, Mitra S, J. Colloid Interface Sci., 355(2), 383 (2011)
- Simmons TJ, Lee SH, Park TJ, Hashin DP, Ajayan PM, Linhardt RJ, Carbon., 47, 1561 (2009)
- Li LJ, Nicholas RJ, Chen CY, Darton RC, Baker SC, Nanotechnology., 16, S202 (2005)
- Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
- Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu GH, Carbon., 44, 692 (2006)
- Jeong DS, Nam BU, Polym.(Korea), 35(1), 17 (2011)
- Barraza HJ, Pompeo F, O'Rear A, Resasco DE, Nano Lett., 2, 797 (2002)
- Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J, Carbon., 45, 2897 (2007)
- Grossiord N, Wouters MEL, Miltner HE, Lu K, Loos J, Mele BV, Koning CE, Eur. Polym. J., 46, 1833 (2010)
- O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE, Chem. Phys. Lett., 342(3-4), 265 (2001)
- Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
- Paine AJ, Luymes W, McNulty J, Macromolecules., 23, 3104 (1990)
- Shin JY, Premkumar T, Geckeler KE, Chem. Eur. J., 14, 6044 (2008)
- Bonard JM, Stora T, Salvetat JP, Maier F, Stockli T, Duschl C, Forro L, deHeer WA, Chatelain A, Adv. Mater., 9(10), 827 (1997)
- Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
- Woo DK, Kim BC, Lee SJ, Korea-Australia Rheol. J., 21, 185 (2009)
- Lee KM, Han CD, Macromolecules, 36(19), 7165 (2003)