Journal of Industrial and Engineering Chemistry, Vol.19, No.4, 1162-1168, July, 2013
Synthesis of characterization of ZnxTiyS and its photocatalytic activity for hydrogen production from methanol/water photo-splitting
E-mail:
In order to enhance the production of hydrogen, a new system based on a ZnxTiyS photocatalyst is investigated. ZnxTiyS (x = 1, 0.95, 0.9, 0.85, 0.8 mol and y = 0, 0.05, 0.1, 0.15, 0.2 mol, respectively) is prepared using thiourea (H2NCSNH2). The formed ZnxTiyS particles are globular, ~6 μm in diameter, and composed of small spherical particles about 600 nm in diameter. The ZnxTiyS particles absorb at wavelengths above 380 nm in the UV-region like TiO2. The evolution of H2 by methanol/water (1:1) photo-splitting over ZnxTiyS in a methanol/water system is dramatically enhanced versus pure ZnS. In particular, 4.0 mmol of H2 gas is produced in 10 h when 1.0 g of Zn0.9Ti0.1S was used, and its performance increases in KOH solutions. Based on cyclic voltammetry (CV) and UV-vis spectroscopy measurements, the high photo-activity of Zn0.9Ti0.1S is attributed to the existence of a band-gap that includes the redox potential of water.
- Hakoda T, Matsumoto K, Mizuno A, Hirota K, Appl. Catal. A: Gen., 357(2), 244 (2009)
- Ranjit KT, Varadarajan TK, Viswanathan B, Journal of Photochemistry and Photobiology A., 96, 181 (1996)
- Choi HJ, Kang M, International Journal of Hydrogen Energy., 32, 3841 (2007)
- Park MS, Kang M, Materials Letters., 62, 183 (2008)
- Zheng XJ, Wei LF, Zhang ZH, Jiang QJ, Wei YJ, Xie B, Wei MB, International Journal of Hydrogen Energy., 34, 9033 (2009)
- Chae J, Lee J, Jeong JH, Kang M, Bulletin of the Korean Chemical Society., 30, 302 (2009)
- Kimi M, Yuliati L, Shamsuddin M, International Journal of Hydrogen Energy., 36, 9453 (2011)
- Wang L, Wang W, Shang M, Yin W, Sun S, Zhang L, International Journal of Hydrogen Energy., 35, 19 (2010)
- Tsuji I, Kudo A, Journal of Photochemistry and Photobiology A., 156, 249 (2003)
- Li F, Wu JF, Qin QH, Li Z, Huang XT, Powder Technol., 198(2), 267 (2010)
- Huanga Y, Suna F, Wua T, Wua Q, Huanga Z, Sua H, Zhanga Z, Journal of Solid State Chemistry., 184, 644 (2011)
- Hwang CS, Cho IH, Bulletin of the Korean Chemical Society., 26, 1776 (2005)
- Fenga S, Zhaoa J, Zhu Z, Materials Science and Engineering: B., 150, 116 (2008)
- Nakamura S, Yamada Y, Taguchi T, Journal of Crystal Growth., 214-215, 1091 (2000)
- Majia SK, Duttaa AK, Srivastavab DN, Paulb P, Mondala A, Adhikary B, Polyhedron., 30, 2493 (2011)
- Kim J, Kang M, Bulletin of the Korean Chemical Society., 33, 2133 (2012)
- Klug H, Alexander L, X-ay Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley, New York, 618 (1974)
- Herna’ndez-Gordillo A, Tzompantzi F, Go’mez R, International Journal of Hydrogen Energy., 37, 17002 (2012)
- Lin Y, Lin R, Yin F, Xiao X, Wu M, Gu W, Li W, Journal of Photochemistry and Photobiology A: Chemistry., 125, 135 (1999)
- Tanahashi K, Harada H, Koukitsu A, Inoue N, J. Cryst. Growth, 225(2-4), 294 (2001)
- Jin ZL, Zhang XJ, Lu GX, Li SB, J. Mol. Catal. A-Chem., 259(1-2), 275 (2006)
- Muruganandham M, Selvam K, Swaminathana M, J. Hazard. Mater., 144(1-2), 316 (2007)
- Mejiritski A, Polykarpov AY, Sarker AM, D.C. Neckers DC, Journal of Photochemistry and Photobiology A: Chemistry., 108, 289 (1997)
- Nadeem MY, Sadhana TB, Altaf M, Chaudhry MA, Journal of Scientific & Industrial Research., 15, 245 (2004)
- Lee IJ, Jung TS, Kim JG, Ro SH, Kim CS, Lee YJ, Kim YM, Lee JH, Kang MS, J. Ind. Eng. Chem., 14(6), 869 (2008)
- Kang M, Choung SJ, Park JY, Catal. Today, 87(1-4), 87 (2003)
- Johansson T, Mammo W, Svensson M, Andersson MR, Ingana¨ s O, Journal of Materials Chemistry., 13, 1316 (2003)