화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.4, 1162-1168, July, 2013
Synthesis of characterization of ZnxTiyS and its photocatalytic activity for hydrogen production from methanol/water photo-splitting
E-mail:
In order to enhance the production of hydrogen, a new system based on a ZnxTiyS photocatalyst is investigated. ZnxTiyS (x = 1, 0.95, 0.9, 0.85, 0.8 mol and y = 0, 0.05, 0.1, 0.15, 0.2 mol, respectively) is prepared using thiourea (H2NCSNH2). The formed ZnxTiyS particles are globular, ~6 μm in diameter, and composed of small spherical particles about 600 nm in diameter. The ZnxTiyS particles absorb at wavelengths above 380 nm in the UV-region like TiO2. The evolution of H2 by methanol/water (1:1) photo-splitting over ZnxTiyS in a methanol/water system is dramatically enhanced versus pure ZnS. In particular, 4.0 mmol of H2 gas is produced in 10 h when 1.0 g of Zn0.9Ti0.1S was used, and its performance increases in KOH solutions. Based on cyclic voltammetry (CV) and UV-vis spectroscopy measurements, the high photo-activity of Zn0.9Ti0.1S is attributed to the existence of a band-gap that includes the redox potential of water.
  1. Hakoda T, Matsumoto K, Mizuno A, Hirota K, Appl. Catal. A: Gen., 357(2), 244 (2009)
  2. Ranjit KT, Varadarajan TK, Viswanathan B, Journal of Photochemistry and Photobiology A., 96, 181 (1996)
  3. Choi HJ, Kang M, International Journal of Hydrogen Energy., 32, 3841 (2007)
  4. Park MS, Kang M, Materials Letters., 62, 183 (2008)
  5. Zheng XJ, Wei LF, Zhang ZH, Jiang QJ, Wei YJ, Xie B, Wei MB, International Journal of Hydrogen Energy., 34, 9033 (2009)
  6. Chae J, Lee J, Jeong JH, Kang M, Bulletin of the Korean Chemical Society., 30, 302 (2009)
  7. Kimi M, Yuliati L, Shamsuddin M, International Journal of Hydrogen Energy., 36, 9453 (2011)
  8. Wang L, Wang W, Shang M, Yin W, Sun S, Zhang L, International Journal of Hydrogen Energy., 35, 19 (2010)
  9. Tsuji I, Kudo A, Journal of Photochemistry and Photobiology A., 156, 249 (2003)
  10. Li F, Wu JF, Qin QH, Li Z, Huang XT, Powder Technol., 198(2), 267 (2010)
  11. Huanga Y, Suna F, Wua T, Wua Q, Huanga Z, Sua H, Zhanga Z, Journal of Solid State Chemistry., 184, 644 (2011)
  12. Hwang CS, Cho IH, Bulletin of the Korean Chemical Society., 26, 1776 (2005)
  13. Fenga S, Zhaoa J, Zhu Z, Materials Science and Engineering: B., 150, 116 (2008)
  14. Nakamura S, Yamada Y, Taguchi T, Journal of Crystal Growth., 214-215, 1091 (2000)
  15. Majia SK, Duttaa AK, Srivastavab DN, Paulb P, Mondala A, Adhikary B, Polyhedron., 30, 2493 (2011)
  16. Kim J, Kang M, Bulletin of the Korean Chemical Society., 33, 2133 (2012)
  17. Klug H, Alexander L, X-ay Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley, New York, 618 (1974)
  18. Herna’ndez-Gordillo A, Tzompantzi F, Go’mez R, International Journal of Hydrogen Energy., 37, 17002 (2012)
  19. Lin Y, Lin R, Yin F, Xiao X, Wu M, Gu W, Li W, Journal of Photochemistry and Photobiology A: Chemistry., 125, 135 (1999)
  20. Tanahashi K, Harada H, Koukitsu A, Inoue N, J. Cryst. Growth, 225(2-4), 294 (2001)
  21. Jin ZL, Zhang XJ, Lu GX, Li SB, J. Mol. Catal. A-Chem., 259(1-2), 275 (2006)
  22. Muruganandham M, Selvam K, Swaminathana M, J. Hazard. Mater., 144(1-2), 316 (2007)
  23. Mejiritski A, Polykarpov AY, Sarker AM, D.C. Neckers DC, Journal of Photochemistry and Photobiology A: Chemistry., 108, 289 (1997)
  24. Nadeem MY, Sadhana TB, Altaf M, Chaudhry MA, Journal of Scientific & Industrial Research., 15, 245 (2004)
  25. Lee IJ, Jung TS, Kim JG, Ro SH, Kim CS, Lee YJ, Kim YM, Lee JH, Kang MS, J. Ind. Eng. Chem., 14(6), 869 (2008)
  26. Kang M, Choung SJ, Park JY, Catal. Today, 87(1-4), 87 (2003)
  27. Johansson T, Mammo W, Svensson M, Andersson MR, Ingana¨ s O, Journal of Materials Chemistry., 13, 1316 (2003)