Applied Chemistry for Engineering, Vol.24, No.4, 423-427, August, 2013
코크스폐수에 함유된 S^(-2)과 SCN-이 미생물 활성에 미치는 영향
Inhibitory Effects of Toxic Materials on Activation of Microorganisms in Coke Plant Wastewater
E-mail:
초록
본 연구에서는 코크스공장의 Coke Oven Gas (COG) 정제 과정에서 발생되는 폐수의 특성을 규명하고 폐수를 안정적으로 처리하기 위한 최적 운전조건을 도출하였다. 코크스 제조공장에서 발생되는 폐수 중에는 미생물에 유해한 S^(-2),SCN-이 각각 6.8∼11.2 mg/L, 190∼320 mg/L로 높은 농도로 함유되어 있다. S^(-2) 이온농도가 10 mg/L 이하인 경우 활성슬러지의 SV30값이 280∼340 mL로 슬러지 침강성이 양호했지만 S^(-2) 이온농도가 15 mg/L 이상에서는 SV30가 560∼680mL로 슬러지 침강성이 악화되었다. 또한 SCN- 이온의 경우는 SCN- 이온의 농도가 300 mg/L 이하인 경우 SV30값이 245∼320 mL로 슬러지 침강성이 양호했지만, SCN- 이온농도가 400 mg/L 이상에서는 SV30 값이 470∼567 mL로 슬러지 침강성이 악화되었다. 따라서 코크스공장 가스 정제공정에서 발생되는 폐수를 효율적이고 안정적으로 처리하고 미생물 활성을 양호하게 유지하기 위해서는 폐수처리설비의 유입원수 중 S^(-2)와 SCN- 이온농도를 각각 15 mg/L, 400 mg/L 이하로 유지해주어야 바람직하다는 것을 알 수 있었다.
This research was carried out to identify the characteristics of the wastewater from coke oven gas (COG) purification process of the coke plant, and derive optimal operating conditions for the
treatment of wastewater. The coke plant wastewater contains highly concentrated S^(-2) and SCN- that are harmful to microorganisms, and their concentrations were 6.8∼11.2 mg/L and 190∼320 mg/L, respectively. When the S^(-2) ion concentration was lower than 10 mg/L, SV30 of
active sludge was 280∼340 mL and the sludge sedimentation velocity was very fast. But, when the S^(-2) ion concentration was higher than 15 mg/L, SV30 of the active sludge was 560∼680 mL and the sludge sedimentation velocity was very slow. Also when the SCN- ion concentration was lower than 300 mg/L, SV30 of the active sludge was 245∼320 mL and the sludge sedimentation velocity was very fast. But, when the SCN- ion concentration was higher than 400 mg/L, SV30 of the active sludge was 470∼567 mL and the sludge sedimentation velocity was slow. To treat the wastewater generated by COG purification process of the coke plant effectively and to maintain microorganism activities in good conditions, the ion concentration of S^(-2) and SCN- should be lower than 15 mg/L and 400 mg/L, respectively.
- Suschka J, Morel J, Mierzwinski S, Janusznek R, Water Sci.Technol., 29, 69 (1994)
- Stafford DA, Callely AG, J. Gen. Microbiol., 55, 289 (1969)
- Ghose MK, Water Res., 36, 1127 (2002)
- Kim YM, Park D, Lee DS, Park JM, J. Hazard. Mater., 141(1), 27 (2007)
- Papadimitriou CA, Dabou X, Samaras P, Sakellaropoulos GP, Global NEST Journal., 8, 16 (2006)
- Staib C, Lant P, Biochem. Eng. J., 34, 122 (2007)
- Kim SS, Kim HJ, Korean J. Chem. Eng., 20(6), 1103 (2003)
- Karan K, Mehrotra AK, Behie LA, Can. J. Chem. Eng., 77(2), 392 (1999)
- Kim JG, RIST Res. J., 20, 2 (2006)
- APHA, Standard Methods for the Examination of water and Wastewater, 19th Ed., Washington D. C. (1996)