화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.9, 1700-1709, September, 2013
Evaluation of solvent dearomatization effect in heavy feedstock thermal cracking to light olefin: An optimization study
E-mail:
Response surface method was used to study the effect of aromatic extraction of heavy feedstock in thermal cracking. N-methylpyrrolidone as the solvent performing dearomatization of feedstock was at different temperature and molar solvent to oil ratios. Temperature, flow rate and steam-to-hydrocarbon ratio were in the range of 1,053-1,143K, 1-2 g/g, and 0.75-1.2 g/min, respectively. From the CCD studies, the effects of flow rate and coil outlet temperature were the key factors influencing the yield of light olefins. Ethylene and propylene yields increased more than 10% by dearomatization. C5 + decreased by 13% on average. Finally, we obtained the single maximum yield of ethylene, propylene, and simultaneous maximum yields for untreated and raffinate.
  1. Ren T, Patel M, Blok K, Energy, 31(4), 425 (2006)
  2. Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WRW, Hassan SHA, Heng LY, Alam J, Oh SE, Appl.Energy., 1050 (2013)
  3. Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Wan Daud WR, Int. J. Hydrog. Energy., 13746 (2011)
  4. Greene R, PD 19 (1) Vacuum Gas Oil Cracking (1975)
  5. Suzuki T, Itoh M, Mishima M, Watanabe Y, Takegami Y, Fuel., 60, 961 (1981)
  6. Van Camp CE, Van Damme PS, Froment GF, Industrial & Engineering Chemistry Process Design and Development., 23, 155 (1984)
  7. Sie S, Senden M, Van Wechem H, Catal. Today., 8, 371 (1991)
  8. Skraba FW, Method and apparatus for pyrolytically cracking hydrocarbons, in, Google Patents (1992)
  9. Depeyre D, Flicoteaux C, Chardaire C, Industrial & Engineering Chemistry Process Design and Development., 24, 1251 (1985)
  10. Rodil R, Carro A, Lorenzo R, Torrijos RC, Anal. Chem., 77, 2259 (2005)
  11. Basily IK, Shafik AL, Sarhan AA, Mohamed MB, J. Nanotechnol., DOI:10.1155/2012/439531. (2012)
  12. Zou R, Lou Q, Mo S, Feng S, Ind. Eng. Chem. Res., 32, 843 (1993)
  13. Liu JC, Shen BX, Wang DQ, Dong JH, J. Petroleum Sci.Eng., 66, 156 (2009)
  14. Gaile A, Somov V, Zalishchevskii G, Kaifadzhyan E, Koldobskaya L, Russian Journal of Applied Chemistry., 79, 590 (2006)
  15. El-Gayar MS, Gohar GA, Ibrahim AM, Ibrahim HM, Aly AM, Fuel Process. Technol., 89(3), 254 (2008)
  16. Kukovecz A, Mehn D, Nemes-Nagy E, Szabo R, Kiricsi I, Carbon., 43, 2842 (2005)
  17. Sedighi M, Keyvanloo K, Towfighi J, Korean J. Chem. Eng., 27(4), 1170 (2010)
  18. Senol S, Measurement., 36, 131 (2004)
  19. Keyvanloo K, Towfighi J, Sadrameli S, Mohamadalizadeh A, J. Anal. Appl. Pyrol., 87, 224 (2010)
  20. Sedighi M, Ghasemi M, Hassan SHA, Daud WRW, Ismail M, Abdallah E, World Journal of Microbiology and Biotechnology., 1 (2012)
  21. Abghari SZ, Darian JT, Karimzadeh R, Omidkhah MR, Korean J. Chem. Eng., 25(4), 681 (2008)
  22. Dicholkar DD, Gaikar VG, Kumar S, Natarajan R, J. Anal.Appl. Pyrol., DOI:10.1021/ie4003238. (2013)
  23. Kopinke FD, Bach G, Zimmermann G, J. Anal. Appl. Pyrol., 27, 45 (1993)
  24. Kumar P, Kunzru D, Industrial & Engineering Chemistry Process Design and Development., 24, 774 (1985)
  25. Akhnazarova S, Kafarov V, Chem. Chem. Eng., Moscow: MIR.Publishers, Moscow (URSS) (1982)
  26. Arteaga G, Li-Chan E, Vazquez-Arteaga M, Nakai S, Trends in Food Science & Technology., 5, 243 (1994)
  27. Montgomery DC, Design and analysis of experiments, John Wiley & Sons Inc. (2008)