화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.5, 1483-1492, September, 2013
Water-gas shift reaction over Cu-Zn, Cu-Fe, and Cu-Zn-Fe composite-oxide catalysts prepared by urea-nitrate combustion
E-mail:
Water-gas shift reaction was investigated over Cu-Zn, Cu-Fe and Cu-Zn-Fe composite-oxide catalysts at atmospheric pressure from 200 to 375 ℃ in terms of reducing the CO content with maximal H2 yield. The Cu0.15ZnFe2 spinel catalyst expressed a higher CO conversion level and H2 yield at a lower temperature compared to the Cu0.15Zn and Cu0.15Fe catalysts. Adding H2O to the feed up to 30% (v/v), but not above, increased the CO reduction level, presumably by increasing the hydroxyl species to react with the adsorbed CO. Increasing the W/F ratio to 0.24 g s cm^(-3) increased the CO conversion level to 0.76 at 275 ℃ with the Cu0.15ZnFe2 catalyst, and could be further increased to 0.86 at 350 ℃ by increasing the Cu molar ratio to 0.30(Cu0.30ZnFe2). Nevertheless, increasing the Cu molar content to 0.50 reduced the CO conversion level. No requirement for adding O2 when using the Cu0.30ZnFe2 catalyst at >260 ℃ was observed. Increasing the CO content in the reactant decreased its conversion level. The performance of the Cu0.30ZnFe2 catalyst was stable over a test period in a CO-rich condition. No undesired product was detected, suggesting a higher selectivity for hydrogen production with a low CO content.
  1. Baschuk JJ, Li XG, Int. J. Energy Res., 25(8), 695 (2001)
  2. Ralph TR, Hogarth MP, Platinum Metals Review., 46, 117 (2002)
  3. Bickford ES, Velu S, Song CS, Catal. Today, 99(3-4), 347 (2005)
  4. Lei Y, Cant NW, Trimm DL, J. Catal., 239(1), 227 (2006)
  5. Natesakhawat S, Wang XQ, Zhang LZ, Ozkan US, J. Mol. Catal. A-Chem., 260(1-2), 82 (2006)
  6. Gines MJ, Amadeo N, Laborde M, Apesteguia CR, Appl. Catal. A: Gen., 131(2), 283 (1995)
  7. Huber F, Walrnsley J, Venvik H, Holmen A, Appl. Catal. A: Gen., 349(1-2), 46 (2008)
  8. Ruettinger W, Ilinich O, Farrauto RJ, J. Power Sources, 118(1-2), 61 (2003)
  9. Lima AAG, Nele M, Moreno EL, Andrade HMC, Appl. Catal. A: Gen., 171(1), 31 (1998)
  10. Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)
  11. Shishido T, Yamamoto M, Atake I, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, J. Mol. Catal. A-Chem., 253(1-2), 270 (2006)
  12. Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K, Appl. Catal. A: Gen., 238(1), 11 (2003)
  13. Platon A, Wang Y, Hydrogen and Syngas Production and Purification Technology, American Institute of Chemical Engineers (2010)
  14. Takeguchi T, Kani Y, Inoue M, Eguchi K, Catal. Lett., 83(1-2), 49 (2002)
  15. Boumaza S, Auroux A, Bennici S, Boudjemaa A, Trari M, Bouguelia A, Bouarab R, Reaction Kinetics Mechanisms and Catalysis., 100, 145 (2010)
  16. Kameoka S, Tanabe T, Tsai AP, Catal. Lett., 100(1-2), 89 (2005)
  17. Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K, Appl. Catal. A: Gen., 242(2), 287 (2003)
  18. Jinwei L, Yingying Z, Fengli Z, Xingyi L, Qi Z, Chinese Journal of Catalysis., 29, 346 (2008)
  19. Hua N, Wang H, Du Y, Shen M, Yang P, Catalysis Communications., 6, 491 (2005)
  20. Silberova BAA, Mul G, Makkee M, Moulijn JA, J. Catal., 243(1), 171 (2006)
  21. Jinwei L, Yingying Z, Xingyi L, Qi Z, Acta. Physico-Chimica Sinica., 24, 932 (2008)
  22. Kim YS, Lim SJ, Kim YH, Lee JH, Lee HI, Journal of Industrial and Engineering Chemisty., http://dx.doi.org/10.1016/j.jiec.2011.11.124. (2012)
  23. Kim HS, Cha KS, Yoo BK, Ryu TG, Lee YS, Park CS, Kim YH, J. Ind. Eng. Chem., 16(1), 81 (2010)
  24. Pradhan GK, Parida KM, Journal of Industrial and Engineering Chemisty., http://dx.doi.org/10.1016/j.jiec.2012.02.022. (2012)
  25. Du XR, Yuan ZS, Cao L, Zhang CX, Wang SD, Fuel Process. Technol., 89(2), 131 (2008)
  26. Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S, International Journal of Hydrogen Energy., 32, 915 (2007)
  27. Sirichaiprasert K, Pongstabodee S, Luengnaruemitchai A, J. Chin. Inst. Chem. Eng., 39(6), 597 (2008)
  28. Thouchprasitchai N, Luengnaruemitchai A, Pongstabodee S, Journal of the Taiwan Institute of Chemical Engineers., 42, 632 (2011)
  29. Meng WQ, Li F, Evans DG, Duan X, J. Mater. Sci., 39(14), 4655 (2004)
  30. Li F, Yang Q, Evans DG, Duan X, Catalysis Letters., 40, 1917 (2005)
  31. Ping Z, Bo Y, Lei Z, Science in China Series B: Chemistry., 52, 101 (2009)
  32. Ahmed TT, Rahman IZ, Rahman MA, Journal of Materials Processing Technology., 153-154, 797 (2004)
  33. Akhter S, Paul DP, Hakim M, Saha DK, Al-Mamun M, Parveen A, Materials Science and Applications., 2, 1675 (2011)
  34. Banerjee M, Verma N, Prasad R, J. Mater. Sci., 42(5), 1833 (2007)
  35. Papavasiliou J, Avgouropoulos G, Ioannides T, Appl. Catal. B: Environ., 69(3-4), 226 (2007)
  36. Liang M, Kang W, Xie K, Journal of Natural Gas Chemistry., 18, 110 (2009)
  37. Liao LF, Lien CF, Shieh DL, Chen MT, Lin JL, J. Phys. Chem. B, 106(43), 11240 (2002)
  38. Chang ACC, Chuang SSC, Gray M, Soong Y, Energy Fuels, 17(2), 468 (2003)
  39. Noei H, Wo¨ ll C, Muhler M, Wang Y, Journal of Physical Chemistry C., 115, 908 (2011)
  40. Utaka T, Sekizawa K, Eguchi K, Applied Catalysis A: General., 194, 21 (2000)
  41. Li K, Fu Q, Flytzani-Slephanopoulos M, Appl. Catal. B: Environ., 27(3), 179 (2000)
  42. Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J, Appl. Catal. A: Gen., 215(1-2), 271 (2001)
  43. Shido T, Iwasawa Y, Journal of Catalysis., 141, 71 (1993)
  44. Fishtik I, Datta R, Surface Science., 512, 229 (2002)
  45. Chen WH, Hsieh TC, Jiang TL, Energy Conv. Manag., 49(10), 2801 (2008)
  46. C¸ag˘layan BS, Aksoylu AE, Journal of Chemistry., 33, 249 (2009)
  47. Gupta A, Hegde MS, Appl. Catal. B: Environ., 99(1-2), 279 (2010)