화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.5, 1587-1592, September, 2013
Microwave-assisted functionalization of polyurethane surface for improving blood compatibility
E-mail:,
In order to improve the hemocompatibility of polyurethane (PU), we report a rapid and efficient two-step approach to graft poly(ethylene glycol) (PEG) onto PU surface by a microwave-assisted method, involving diphenylmethane diisocyanate (MDI) . functionalization and subsequent PEG coupling. Compared with conventional heating, the effects of solvent, time and MDI concentrations on the microwave-assisted MDI-functionalization, and the effect of time on the microwave-assisted PEG coupling were studied. PEGs with different molecular weights were successfully grafted onto PU surface under the optimum microwave-assisted conditions within only 20 min, and characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and chemical titration. The hydrophilicity and in vitro blood compatibility of the surfaces were evaluated by water contact angle measurements, blood coagulation time (whole blood clotting time and prothrombin time) and platelet adhesion tests, respectively. All the PU-PEG surfaces had improved surface wettability and hemocompatibility. The results suggested that microwave-assisted functionalization may be a promising method for rapidly and effectively decorating polyurethane surfaces.
  1. Chen L, Han D, Jiang L, Colloids and Surfaces B., 85, 2 (2011)
  2. Ratner BD, Biomaterials., 28, 5144 (2007)
  3. Gorbet MB, Sefton MV, Biomaterials., 25, 5681 (2004)
  4. Mao C, Qiu Y, Sang H, Mei H, Zhu A, Shen J, Lin S, Advances in Colloid and Interface Science., 110, 5 (2004)
  5. Aksoy AE, Hasirci V, Hasirci N, Macromolecular Symposium., 269, 145 (2008)
  6. Chen H, Hu X, Zhang Y, Li D, Wu Z, Zhang T, Colloids and Surfaces B., 61, 237 (2008)
  7. Chuang TW, Masters KS, Biomaterials., 30, 5341 (2009)
  8. Korematsu A, Takemoto Y, Nakaya T, Inoue H, Biomaterials., 23, 263 (2002)
  9. Tan D, Zhang X, Li J, Tan H, Fu Q, Journal of Biomedical Materials Research., 100A, 380 (2012)
  10. Wu Z, Chen H, Huang H, Zhao T, Liu X, Li D, Yu Q, Macromolecular Bioscience., 9, 1165 (2009)
  11. Zande´ n C, Voinova M, Gold J, Morsdorf D, Bernhardt I, Liu J, European Polymer Journal., 48, 472 (2012)
  12. Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH, European Polymer Journal., 45, 1412 (2009)
  13. Goddard JM, Hotchkiss JH, Progress in Polymer Science., 32, 698 (2007)
  14. Huang JJ, Xu WL, Appl. Surf. Sci., 256(12), 3921 (2010)
  15. Sosnik A, Gotelli G, Abraham GA, Progress in Polymer Science., 36, 1050 (2011)
  16. Guo W, Hensarling RM, LeBlanc AL, Hoff EA, Baranek AD, Patton DL, Macromol. Rapid Commun., 33(9), 863 (2012)
  17. Park MS, Ramaraj B, Yoon KR, Appl. Surf. Sci., 258(22), 8656 (2012)
  18. Yang JM, Hsiue GH, Journal of Biomedical Materials Research., 31, 281 (1996)
  19. Sateesh A, Vogel J, Dayss E, Fricke B, Do¨ lling K, Rothe U, Journal of Biomedical Materials Research., 84A, 672 (2008)
  20. Hayes BL, Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing, Matthews, NC (2002)
  21. Lusse S, Arnold K, Macromolecules, 29(12), 4251 (1996)
  22. Han DK, Park KD, Ahn KD, Jeong SY, Kim YH, Journal of Biomedical Materials Research., 23, 87 (1989)
  23. Ren ZC, Chen GY, Wei ZY, Sang L, Qi M, J. Appl. Polym. Sci., 127(1), 308 (2013)
  24. Lu CY, Zhou NL, Xu D, Tang YD, Jin SX, Wu Y, Shen J, Appl. Surf. Sci., 258(1), 618 (2011)
  25. He CL, Wang M, Cai XM, Huang XB, Li L, Zhu HM, Shen J, Yuan J, Appl. Surf. Sci., 258(2), 755 (2011)