화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.9, 941-948, September, 2013
Synthesis and characteristics of UV curable dimethyl 5-sulfoisophthalate sodium salt-co-diethylene glycol with maleic and phthalic anhydride copolymers (DMSIP-co-DEG-co-MA/PA) for application in redox flow batteries
E-mail:
Dimethyl 5-sulfoisophthalate sodium salt (DMSIP)-co-diethylene glycol (DEG)-co-maleic anhydride (MA)/phthalic anhydride (PA) oligomers were synthesized via condensation reaction and the corresponding membranes were prepared by UV curing. The number-average molecular weight (Mn) of the DMSIP-co-DEG-co-MA/PA (DDMP) was proportional to the concentration of DMSIP and ranged from 1,360-2,856 g/mol. A successful introduction of a -SO3Na group to the main oligomer chain was confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy and the thermal stability of the membranes up to 300 °C was analyzed using thermogravimetric analysis (TGA). The water uptake values, swelling ratios, and the ion-exchange capacities of the membranes were 13%-30%, 7%-15%, and 0.7-0.9 meq/g, respectively. The electrical properties of the membrane, including the area resistance, ion transport number, and the cyclic charge-discharge current were also analyzed; these properties confirmed that these membranes were suitable for use in redox flow battery (RFB) applications.
  1. Jossen A, Garche J, Sauer DU, Sol. Energy, 76(6), 759 (2004)
  2. Butler D, J. Power Sources, 59, 99 (1996)
  3. Sauer DU, J. Power Sources, 64, 181 (1997)
  4. Zhang SH, Yin CX, Xing DB, Yang DL, Jian XG, J. Membr. Sci., 363(1-2), 243 (2010)
  5. Kwak NS, Koo JS, Hwang TS, Macromol. Res., 20(2), 205 (2012)
  6. Qiu JY, Li MY, Ni JF, Zhai ML, Peng J, Xu L, Zhou HH, Li JQ, Wei GS, J. Membr. Sci., 297(1-2), 174 (2007)
  7. Chieng SC, Kazacos M, Kazacos MS, J. Power Sources, 39, 11 (1992)
  8. Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153 (1997)
  9. Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J, Yang Z, Hickner MA, Electrochem. Commun., 12, 1650 (2010)
  10. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
  11. Mai ZS, Zhang HM, Li XF, Xiao SH, Zhang HZ, J. Power Sources, 196(13), 5737 (2011)
  12. Tian B, Yan CW, Wang FH, J. Membr. Sci., 234(1-2), 51 (2004)
  13. Cai HL, Shao K, Zhong SL, Zhao CJ, Zhang G, Li XF, Na H, J. Membr. Sci., 297(1-2), 162 (2007)
  14. Yoon SJ, Choi JH, Hong YT, Lee SY, Macromol. Res., 18(4), 352 (2010)
  15. Chen JH, Li DR, Koshikawa H, Asano M, Maekawa Y, J. Membr. Sci., 362(1-2), 488 (2010)
  16. Fang B, Iwasa S, Wei Y, Arai T, Kumagai M, Electrochim. Acta, 47(24), 3971 (2002)
  17. Kim YB, Park SC, Kim HK, Hong JW, Macromol. Res., 16(2), 128 (2008)
  18. Lee W, Gil SC, Lee H, Kim H, Macromol. Res., 17(6), 451 (2009)
  19. Wei WP, Zhang HM, Li XF, Mai ZS, Zhang HZ, J. Power Sources, 208, 421 (2012)
  20. Li GH, Kim SH, Cho CG, Park TJ, Kim Y, Macromol. Res., 14(5), 504 (2006)
  21. Klaysom C, Ladewig BP, Lu GQM, Wang LZ, J. Membr. Sci., 368(1-2), 48 (2011)
  22. Grulke EA, Polymer Process Engineering, Prentice-Hall, Inc., New Jersey, 1994.
  23. Silverstein RM, Webster FX, Kiemle DJ, Spectrometric Identification of Organic Compounds, John Wiley & Sons, Inc., Hoboken, 2005.
  24. Ismail AF, Zubir N, Nasef MM, Dahlan KM, Hassan AR, J. Membr. Sci., 254(1-2), 189 (2005)
  25. Song JM, Shin J, Sohn JY, Nho YC, Macromol. Res., 19(10), 1082 (2011)
  26. Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, Kaliaguine S, Polymer, 47(3), 808 (2006)
  27. Wang H, Badami AS, Roy A, McGrath JE, J. Polym. Sci. A: Polym. Chem., 45(2), 284 (2007)
  28. Chen JH, Asano M, Yamaki T, Yoshida M, J. Membr. Sci., 269(1-2), 194 (2006)