화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.9, 1011-1020, September, 2013
Synthesis, characterization and pH-Responsive self-assembly behavior of amphiphilic multiarm star triblock copolymers based on PCL, PDEAEMA, and PEG
E-mail:
A series of amphiphilic 4- and 6-armed star triblock copolymers based on poly(?-caprolactone) (PCL), poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA), and poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) were designed and synthesized by a combination of ring opening polymerization (ROP) and continuous activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). The continuous ARGET ATRP of DEAEMA and PEGMA was in situ monitored by react infrared spectroscopy (ReactIR) and showed good first-order kinetic characteristics. The molecular weights and chemical structures of the copolymers and their precursors were confirmed by gel permeation chromatography (GPC) and 1H NMR. The critical micelle concentration (CMC) values of the star copolymers in aqueous solution were extremely low (2.2?4.0 mg/L), depending on the architecture of the copolymers. The pH-responsive self-assembly behavior of the star copolymers in aqueous solution was investigated by a combination of dynamic light scattering (DLS), UV-vis spectrometry and scanning electron microscopy (SEM). When the pH values decreased from 10 to 3, no obvious fluctuation of the visible light transmittance of the micelle solutions was observed for lower polymer concentrations of 0.1 and 1 mg/mL, while sharp increase occurred at higher concentration of 10 mg/mL. The hydrodynamic diameters (D h ) of the micelle solutions appeared slight increase with the increase of concentration, and increased rapidly as the pH decreased from 10 to 4 followed by a slight decrease at pH 3. The effects of pH value on the zeta potentials exhibited almost the same tendency with the D h . This may due to the fact that the protonation of tertiary amine groups in DEAEMA can induce the swelling of micelles. The PCL and PDEAEMA contents and the topological structures (4- or 6-arm) showed significant influences on the pH-sensitivity of the micelles. Overall, the results demonstrated that the structures and pH-sensitivity of these amphiphilic copolymers could be well-controlled and their self-assembled micelles are promising carriers for delivery of anticancer hydrophobic drugs.
  1. Husseini GA, Pitt WG, Adv. Drug Deliv. Rev., 60, 1137 (2008)
  2. Davis ME, Chen Z, Shin DM, Nat. Rev. Drug Discov., 7, 771 (2008)
  3. Tyrrell ZL, Shen YQ, Radosz M, Prog. Polym. Sci, 35, 1128 (2010)
  4. Robb MJ, Connal LA, Lee BF, Lynd NA, Hawker CJ, Polym. Chem., 3, 1618 (2012)
  5. Malmsten M, Soft Matter, 2, 760 (2006)
  6. Giacomelli FC, Stepanek P, Giacomelli C, Schmidt V, Jager E, Jager A, Ulbrich K, Soft Matter, 7, 9316 (2011)
  7. Yang YQ, Zheng LS, Guo XD, Qian Y, Zhang LJ, Biomacromolecules, 12, 116 (2010)
  8. Guo M, Yan Y, Zhang HK, Yan HS, Cao YJ, Liu KL, Wan SR, Huang JS, Yue W, J. Mater. Chem., 18, 5104 (2008)
  9. Wang WW, Cheng D, Gong FM, Miao XM, Shuai XT, Adv. Mater., 24(1), 115 (2012)
  10. Liu JJ, Zhang Y, Yan JL, Lang MD, J. Mater. Chem., 21, 6677 (2001)
  11. Ding JX, Zhuang XL, Xiao CS, Cheng YL, Zhao L, He CL, Tang ZH, Chen XS, J. Mater. Chem., 21, 11383 (2001)
  12. Shen YQ, Zhan YH, Tang JB, Xu PS, Johnson PA, Radosz M, Van Kirk EA, Murdoch WJ, AIChE J., 54(11), 2979 (2008)
  13. Guo XD, Zhang LJ, Chen Y, Qian Y, AIChE J., 56(7), 1922 (2010)
  14. Chen J, Qiu XZ, Ouyang J, Kong JM, Zhong W, Xing MMQ, Biomacromolecules, 12(10), 3601 (2011)
  15. Hu YQ, Kim MS, Kim BS, Lee DS, J. Polym. Sci. A: Polym. Chem., 46(11), 3740 (2008)
  16. Shahalom S, Tong T, Emmett S, Saunders BR, Langmuir, 22(20), 8311 (2006)
  17. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA, Annu. Rev. Chem. Biomol., 1, 149 (2010)
  18. Zhu J, Zhou Z, Yang C, Kong D, Wan Y, Wang Z, J. Biomed. Mater. Res. A, 97A, 498 (2011)
  19. Cao WQ, Zhou J, Mann A, Wang Y, Zhu L, Biomacromolecules, 12(7), 2697 (2011)
  20. Lapienis G, Prog. Polym. Sci, 34, 852 (2009)
  21. Schramm OG, Pavlov GM, van Erp HP, Meier MAR, Hoogenboom R, Schubert US, Macromolecules, 42(6), 1808 (2009)
  22. Schmalz A, Hanisch M, Schmalz H, Muller AHE, Polymer, 51(6), 1213 (2010)
  23. Jia ZF, Zhou YF, Yan DY, J. Polym. Sci. A: Polym. Chem., 43(24), 6534 (2005)
  24. Chen WX, Fan XD, Huang Y, Liu YY, Sun L, React. Funct. Polym., 69(2), 97 (2009)
  25. Kim DG, Kang H, Han S, Lee JC, J. Mater. Chem., 22, 8654 (2012)
  26. Khanna K, Varshney S, Kakkar A, Polym. Chem., 1, 1171 (2010)
  27. Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, Liu S, Biomaterials, 32, 6595 (2011)
  28. Iatridi Z, Tsitsilianis C, Polymer, 3, 1911 (2011)
  29. Huang X, Xiao Y, Lang M, Macromol. Res., 20(6), 597 (2012)
  30. Liu JY, Huang W, Pang Y, Zhu XY, Zhou YF, Yan DY, Langmuir, 26(13), 10585 (2010)
  31. Nabid MR, Rezaei SJT, Sedghi R, Niknejad H, Entezami AA, Oskooie HA, Heravi MM, Polymer, 52(13), 2799 (2011)
  32. Cao WQ, Zhu L, Macromolecules, 44(6), 1500 (2011)
  33. He E, Ravi P, Tam KC, Langmuir, 23(5), 2382 (2007)
  34. Zhang X, Xiao Y, Lang M, J. Macromol. Sci. A, 49, 124 (2012)
  35. Huang X, Xiao Y, Lang M, Macromol. Res., 19(2), 113 (2011)
  36. Huang XJ, Xiao Y, Lang MD, J. Colloid Interface Sci., 364(1), 92 (2011)
  37. Qin ZY, Chen YW, Zhou WH, He XH, Bai FL, Wan MX, Eur. Polym. J., 44, 3732 (2008)
  38. Saeed AO, Dey S, Howdle SM, Thurecht KJ, Alexander C, J. Mater. Chem., 19, 4529 (2009)
  39. Hu FX, Neoh KG, Kang ET, Macromol. Rapid Commun., 30(8), 609 (2009)
  40. Kang SM, Choi IS, Lee KB, Kim YS, Macromol. Res., 17(4), 259 (2009)
  41. Jakubowski W, Matyjaszewski K, Macromol. Symp., 240, 213 (2006)
  42. Burdynska J, Cho HY, Mueller L, Matyjaszewski K, Macromolecules, 43(22), 9227 (2010)
  43. Jakubowski W, Matyjaszewski K, Angew. Chem., 118, 4594 (2006)
  44. Jeon HJ, Youk JH, Ahn SH, Choi JH, Cho KS, Macromol. Res., 17(4), 240 (2009)
  45. Pasquale AJ, Long TE, Macromolecules, 32(23), 7954 (1999)
  46. Pasquale AJ, Long TE, J. Polym. Sci. A: Polym. Chem., 39(1), 216 (2001)
  47. Kang SC, Choi YJ, Kim HZ, Kyong JB, Kim DK, Macromol. Res., 12(1), 107 (2004)
  48. Zhang LY, Guo R, Yang M, Jiang XQ, Liu BR, Adv. Mater., 19(19), 2988 (2007)
  49. Cho CS, Park IK, Nah JW, Akaike T, Macromol. Res., 11(1), 2 (2003)
  50. Hong SW, Kim KH, Huh J, Ahn CH, Jo WH, Macromol. Res., 13(5), 397 (2005)
  51. Han JK, Kim MS, Lee DS, Kim YS, Park RW, Kim KM, Kwon IC, Macromol. Res., 17(2), 99 (2009)
  52. Xue YN, Huang ZZ, Zhang JT, Liu M, Zhang M, Huang SW, Zhuo RX, Polymer, 50(15), 3706 (2009)
  53. Yang YQ, Guo XD, Lin WJ, Zhang LJ, Zhang CY, Qian Y, Soft Matter, 8, 454 (2012)
  54. Lele BS, Leroux JC, Macromolecules, 35(17), 6714 (2002)
  55. Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD, Macromolecules, 24, 1033 (1991)
  56. Lee SC, Chang YK, Yoon JS, Kim CH, Kwon IC, Kim YH, Jeong SY, Macromolecules, 32(6), 1847 (1999)
  57. Kim C, Lee SC, Shin JH, Kwon IC, Jeong SY, Macromolecules, 33(20), 7448 (2000)
  58. Luo SZ, Ling CX, Hu XL, Liu X, Chen SS, Han MC, Xia JA, J. Colloid Interface Sci., 353(1), 76 (2011)
  59. Guo XD, Tandiono F, Wiradharma N, Khor D, Tan CG, Khan M, Qian Y, Yang YY, Biomaterials, 29, 4838 (2008)