화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.434, No.2, 245-251, 2013
Exercise ameliorates cognition impairment due to restraint stress-induced oxidative insult and reduced BDNF level
We assessed whether chronic treadmill exercise attenuated restraint stress-induced cognition impairment. Although serum corticosterone was not significantly altered by exercise, the restraint-induced increases in hippocampal malondialdehyde (MDA) and 4-hydroxynonenal (HNE) were reduced by chronic exercise. The exercise paradigm also reversed stress-induced reductions in brain-derived neurotrophic factor (BDNF), which increased cAMP response element-binding protein (CREB) and ART activation. We verified the relationship between oxidative stress and BDNF signaling by treating primary hippocampal cultures with hydrogen peroxide (H2O2), which reduced BDNF and phosphorylated CREB and ART (p-CREB, p-AKT) in a dose-dependent manner. Notably, pretreatment with N-acetylcysteine (NAC) reversed these decreases in a dose-dependent manner. These findings suggest that chronic exercise can ameliorate repeated stress-induced cognitive impairment by detoxifying reactive oxygen species (ROS) in the hippocampus and activating BDNF signaling. (C) 2013 Elsevier Inc. All rights reserved.