Biotechnology Letters, Vol.35, No.9, 1509-1518, 2013
Functional analysis of PsG6PDH, a cytosolic glucose-6-phosphate dehydrogenase gene from Populus suaveolens, and its contribution to cold tolerance improvement in tobacco plants
A 1,697-bp cDNA sequence, designated as PsG6PDH, was amplified from Populus suaveolens. Multiple sequence alignment and phylogenetic analysis indicated that PsG6PDH encodes a cytosolic G6PDH isoform, with Southern blot analysis demonstrating that the gene is single or low copy in Populus. Transgenic tobacco plants over-expressing PsG6PDH exhibited enhanced cold tolerance. In both transgenic and wild-type (WT) tobacco plants, cold stress increased leaf malondialdehyde (MDA) content, electrolyte leakage (EL), and peroxide (POD) and superoxide dismutase (SOD) activities; relative to WT, however, transgenic lines had lower MDA content and EL and higher SOD and POD activities. In addition, PsG6PDH activated the expression of stress-related genes, including NtERD10b, NtERD10c, and NtSOD, in tobacco plants. Our results provide evidence regarding PsG6PDH regulatory function in plants during low temperature stress.
Keywords:Populus suaveolens;Glucose-6-phosphate dehydrogenase;Oxidative pentose phosphate pathway;Cold resistance