화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.5, 579-586, September, 2013
폴리(비닐 알코올)/사포나이트 나노 복합체 필름 및 연신된 필름의 열적 성질, 모폴로지, 광학 투명성, 및 기체 투과성
Thermal Property, Morphology, Optical Transparency, and Gas Permeability of PVA/SPT Nanocomposite Films and Equi-biaxial Stretching Films
E-mail:
초록
용액 삽입법을 이용하여 다양한 함량의 사포나이트(SPT) 점토를 포함한 폴리(비닐 알코올)(poly(vinyl alcohol), PVA) 나노 복합체 필름을 제조하였다. SPT를 0에서 10 wt%까지 첨가한 PVA 나노 복합체 필름들의 열적 특성, 모폴로지, 광학 투명성 및 기체 투과성에 대해 조사하였다. 특히 5 wt% SPT 포함한 PVA 복합체 필름이 매우 우수한 열적 특성과 기체 차단성을 나타내었다. 5 wt% SPT 포함된 복합체 필름을 연신율에 따라 150에서 250%까지 이축 연신하였고, 이축 연신율에 따른 점토 분산성, 광학적 특성 및 기체 투과성에 대한 조사를 하였다. 다양한 비로 이축 연신한 PVA 나노 복합체 필름은 우수한 광학 투명성과 산소 차단성을 보였다.
Poly(vinyl alcohol)(PVA) nanocomposite films containing various saponite (SPT) clay contents were synthesized using a solution intercalation method. The thermal property, morphology, optical transparency, and gas permeability of the PVA nanocomposite films with various SPT contents in the range of 0 to 10 wt% were examined. PVA nanocomposite film containing 5 wt% SPT showed excellent thermal and gas barrier property. The hybrid films containing 5 wt% SPT were equibiaxially stretched with stretching ratios ranging from 150 to 250%. The clay dispersion, optical transparency, and gas permeability were also examined as a function of equibiaxial stretching ratio. The PVA nanocomposite films with various equibiaxial stretching ratios showed excellent optical transparency and barrier to oxygen permeability.
  1. Fukushima Y, Inagaki S, Incl. Phenom., 5, 473 (1987)
  2. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  3. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigato O, J. Mater. Res., 8, 1174 (1993)
  4. Fu X, Qutubuddin S, Polymer, 42(2), 807 (2001)
  5. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  6. Choi YS, Chung IJ, Korean Chem. Eng. Res., 46(1), 23 (2008)
  7. Suzuki F, Nakane K, Piao JS, J. Mater. Sci., 31(5), 1335 (1996)
  8. Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS, J. Appl. Polym. Sci., 90(12), 3208 (2003)
  9. LeBaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
  10. Gilman JW, Appl. Clay Sci., 15, 31 (1999)
  11. Kojima Y, Usuki A, Kawasumi M, Okada A, J. Mater.Res., 8, 1185 (1993)
  12. Bernard J, Favier A, Davis TP, Barner-Kowollik C, Stenzel MH, Polymer, 47(4), 1073 (2006)
  13. Hassan CM, Peppas NA, Adv. Polym. Sci., 152, 37 (2000)
  14. Levine M, Iikka G, Weis P, J. Polym. Sci. Part B: Polym.Chem., 2, 915 (1964)
  15. Tadavarthy SM, Moller JH, Amplatz K, Am. J.Roentgenol., 125, 609 (1975)
  16. Wen J, Vasudevan VJ, Wilkes GL, J. Sol-Gel Sci.Technol., 5, 115 (1995)
  17. Ham SK, Jung MH, Chang JH, Polym.(Korea), 30(4), 298 (2006)
  18. Strawhecker KE, Manias E, Chem. Mater., 12, 2943 (2000)
  19. Yano K, Usuki A, Kurauchi T, Kamigaito O, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993)
  20. Nakane K, Yamashita T, Iwakura K, Suzuki F, J. Appl. Polym. Sci., 74(1), 133 (1999)
  21. Chuang WY, Young TH, Chiu WY, Lin CY, Polymer, 41(15), 5633 (2000)
  22. Ogata N, Kawakage S, Ogihara T, J. Appl. Polym. Sci., 66, 573 (1999)
  23. Pinnavaia TJ, Science., 220, 365 (1983)
  24. Yeun JH, Bang GS, Park BJ, Ham SK, Chang JH, J. Appl. Polym. Sci., 101(1), 591 (2006)
  25. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC, Chem. Mater., 13, 3516 (2001)
  26. Lan T, Kaviratana PD, Pinavaia TJ, Chem. Mater., 8, 1584 (1996)
  27. Kojima Y, Usuki A, Kawasumi M, Okada A, J. Mater.Res., 8, 1185 (1993)
  28. Shi D, Yu W, Li RKY, Ke Z, Yin J, Eur. Polym. J., 43, 3250 (2007)
  29. Haraguchi K, Ebato M, Takehisa T, Adv. Mater., 18(17), 2250 (2006)
  30. Vendamme R, Onoue SY, Nakao A, Kunitake T, Nat. Mater., 5(6), 494 (2006)
  31. Bin Y, Tanabe Y, Nakabayashi C, Kurosu H, Matsuo M, Polymer, 42(3), 1183 (2001)
  32. Rao YQ, Greener J, Avila-Orta CA, Hsiao BS, Blanton TN, Polymer, 49(10), 2507 (2008)
  33. Jeol S, Fenouillot F, Rousseau A, Masenelli-Varlot K, Gauthier C, Briois JF, Macromolecules, 40(9), 3229 (2007)
  34. Kim Y, Chang JH, Polym.(Korea), 36(4), 478 (2012)
  35. Ohgi H, Sato T, Macromolecules., 26, 559 (1993)
  36. Shin J, Ham M, Kim JC, Ch JH, Polym.(Korea), 35(5), 402 (2011)
  37. Jaynes WF, Bigham JM, Clays Clay Miner., 35, 440 (1987)
  38. Chang JH, Kim SJ, Im S, Polymer, 45(15), 5171 (2004)
  39. Liang ZM, Yin J, Wu JH, Qiu ZH, He FF, Eur.Polym. J., 40, 307 (2004)
  40. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
  41. Kumar S, Jog JP, Natarajan U, J. Appl. Polym. Sci., 89(5), 1186 (2003)
  42. Liu C, Yang Y, Polym. Test., 28, 801 (2009)
  43. Frischer HR, Gielgens LH, Koster TPM, Acta Polym., 50, 122 (1999)
  44. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
  45. Petropoulos JH, Adv. Polym. Sci., 64, 93 (1985)
  46. Chang JH, Park KM, Polym. Eng. Sci., 41(12), 2226 (2001)
  47. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  48. Bharadwaj RK, Macromolecules, 34(26), 9189 (2001)
  49. Min U, Yoon CS, Chang JH, J. Appl. Polym. Sci., 126, E2 (2012)
  50. Rajeev RS, Harkin-Jones E, Soon K, McNally T, Menary G, Armstrong CG, Martin PJ, Eur. Polym. J., 45, 332 (2009)
  51. Ke YC, Long CF, Qi ZN, J. Appl. Polym. Sci., 71(7), 1139 (1999)