화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.5, 638-641, September, 2013
Graphite Nanosheets/PVDF 복합체의 열전 성질
Thermoelectric Properties of Graphite Nanosheets/Poly(vinylidene fluoride) Composites
E-mail:
초록
유연 열전소자를 제조하기 위한 열전재료로서, graphite nanosheet(GNS)와 poly(vinylidene fluoride) (PVDF)를 복합화하여 GNS/PVDF 복합체를 제조하였다. GNS의 함량에 따른 전기전도도, 열전도도, 지벡상수를 측정하여 열전성능을 확인하였다. GNS의 함량이 10에서 70 wt%로 증가하면서 전기전도도는 389에서 1512 S/m로 향상되는 결과를 보였다. 복합체의 전기전도도가 크게 증가하는 반면에 지벡 상수는 26.7에서 31.2 μV/K로 큰 변화를 보이지 않았으며, 열전도도 역시 0.24 W/m·K를 유지하면서 변화를 보이지 않았다. 고분자와의 복합화를 통하여 GNS 자체의 높은 열전도도를 낮춤으로써 향상된 열전성능을 갖는 열전재료를 제조할 수 있었다.
GNS/PVDF composites were prepared using graphite nanosheets (GNS) and poly(vinylidene fluoride) (PVDF) for flexible thermoelectric application. We measured the electrical conductivity, thermal conductivity and Seebeck coefficient of GNS/PVDF composites with different contents of GNS and then evaluated the thermoelectric properties of GNS/PVDF composites. The electrical conductivity of GNS/PVDF composites increased from 389 to 1512 S/m with increasing the content of GNS from 10 to 70 wt%. While the electrical conductivity dramatically increased, Seebeck coefficient and thermal conductivity did not show any big difference as the content of GNS increases. In this study, we demonstrated that GNS/PVDF composites improved the thermoelectric properties by decreasing the thermal conductivity due to the phonon scattering at the interfaces between polymer and GNS nanoplatelets.
  1. Chen G, Dresselhaus MS, Dresselhaus G, Fleurial JP, Cailat T, Int. Mater. Rev., 48, 45 (2003)
  2. Tritt TM, Boettner H, Chen L, MRS Bull., 33, 366 (2008)
  3. Baxendale M, Lim KG, Amaratunga AJ, Phys. Rev. B., 61, 12705 (2000)
  4. Boukai A, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard W, Heath J, Nature., 451, 168 (2008)
  5. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H, Polymer, 45(3), 739 (2004)
  6. Majumdar A, Science., 303, 777 (2004)
  7. Winder EJ, Ellis AB, J. Chem. Educ., 73, 940 (1996)
  8. Yu C, Kim YS, Kim D, Grunlan JC, Nano Lett., 8, 4428 (2008)
  9. Grunlan JC, Kim YC, Ziaee S, Wei X, Abdel-Magid B, Tao K, Macromol. Mater. Eng. Sci., 291, 1035 (2006)
  10. Shinohara Y, Ohara K, Nakanishi H, Imai Y, Isoda Y, Mater. Sci. Forum., 492, 141 (2005)
  11. Collins PG, Bradley K, Ishigami M, Zettl A, Science, 287(5459), 1801 (2000)
  12. Qin C, Shi X, Bai SQ, Chen LD, Wang LJ, Mater. Sci.Eng. A., 420, 208 (2006)
  13. Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL, Appl. Phys. Lett., 98, 183110 (2011)
  14. Choi YM, Lee DS, Czerw R, Chiu PW, Grobert N, Terrones M, Reyes-Reyes M, Terrones H, Charlier JC, Ajayan P, Roth S, Carroll DL, Park YW, Nano Lett., 3, 839 (2003)
  15. Sadeghi F, Ajji A, Polym. Eng. Sci., 49(1), 200 (2009)
  16. Pramoda KP, Mohamed A, Phang IY, Liu T, Polym. Int., 54, 226 (2005)
  17. Linares A, Acosta JL, Eur. Polym. J., 31, 615 (1995)
  18. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG, Nat. Mater., 2(5), 338 (2003)
  19. Liu L, Grunlan JC, Adv. Funct. Mater., 17(14), 2343 (2007)
  20. Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Nam JD, Sinh LH, Seppala J, Polymer, 52(23), 5237 (2011)
  21. Kim D, Kim Y, Choi K, Grunlan JC, Yu C, ACS Nano., 4, 513 (2010)
  22. Lin W, Zhang R, Wong CP, J. Elect. Mater., 39, 268 (2010)
  23. Das AL, Mukherjee R, Katiyer V, Kulkarni M, Ghatak A, Sharma A, Adv. Mater., 19(15), 1943 (2007)
  24. Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE, Phys. Rev. Lett., 80, 1042 (1998)