Polymer(Korea), Vol.37, No.5, 638-641, September, 2013
Graphite Nanosheets/PVDF 복합체의 열전 성질
Thermoelectric Properties of Graphite Nanosheets/Poly(vinylidene fluoride) Composites
E-mail:
초록
유연 열전소자를 제조하기 위한 열전재료로서, graphite nanosheet(GNS)와 poly(vinylidene fluoride) (PVDF)를 복합화하여 GNS/PVDF 복합체를 제조하였다. GNS의 함량에 따른 전기전도도, 열전도도, 지벡상수를 측정하여 열전성능을 확인하였다. GNS의 함량이 10에서 70 wt%로 증가하면서 전기전도도는 389에서 1512 S/m로 향상되는 결과를 보였다. 복합체의 전기전도도가 크게 증가하는 반면에 지벡 상수는 26.7에서 31.2 μV/K로 큰 변화를 보이지 않았으며, 열전도도 역시 0.24 W/m·K를 유지하면서 변화를 보이지 않았다. 고분자와의 복합화를 통하여 GNS 자체의 높은 열전도도를 낮춤으로써 향상된 열전성능을 갖는 열전재료를 제조할 수 있었다.
GNS/PVDF composites were prepared using graphite nanosheets (GNS) and poly(vinylidene fluoride) (PVDF) for flexible thermoelectric application. We measured the electrical conductivity, thermal conductivity and Seebeck coefficient of GNS/PVDF composites with different contents of GNS and then evaluated the thermoelectric properties of GNS/PVDF composites. The electrical conductivity of GNS/PVDF composites increased from 389 to 1512 S/m with increasing the content of GNS from 10 to 70 wt%. While the electrical conductivity dramatically increased, Seebeck coefficient and thermal conductivity did not show any big difference as the content of GNS increases. In this study, we demonstrated that GNS/PVDF composites improved the thermoelectric properties by decreasing the thermal conductivity due to the phonon scattering at the interfaces between polymer and GNS nanoplatelets.
- Chen G, Dresselhaus MS, Dresselhaus G, Fleurial JP, Cailat T, Int. Mater. Rev., 48, 45 (2003)
- Tritt TM, Boettner H, Chen L, MRS Bull., 33, 366 (2008)
- Baxendale M, Lim KG, Amaratunga AJ, Phys. Rev. B., 61, 12705 (2000)
- Boukai A, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard W, Heath J, Nature., 451, 168 (2008)
- Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H, Polymer, 45(3), 739 (2004)
- Majumdar A, Science., 303, 777 (2004)
- Winder EJ, Ellis AB, J. Chem. Educ., 73, 940 (1996)
- Yu C, Kim YS, Kim D, Grunlan JC, Nano Lett., 8, 4428 (2008)
- Grunlan JC, Kim YC, Ziaee S, Wei X, Abdel-Magid B, Tao K, Macromol. Mater. Eng. Sci., 291, 1035 (2006)
- Shinohara Y, Ohara K, Nakanishi H, Imai Y, Isoda Y, Mater. Sci. Forum., 492, 141 (2005)
- Collins PG, Bradley K, Ishigami M, Zettl A, Science, 287(5459), 1801 (2000)
- Qin C, Shi X, Bai SQ, Chen LD, Wang LJ, Mater. Sci.Eng. A., 420, 208 (2006)
- Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL, Appl. Phys. Lett., 98, 183110 (2011)
- Choi YM, Lee DS, Czerw R, Chiu PW, Grobert N, Terrones M, Reyes-Reyes M, Terrones H, Charlier JC, Ajayan P, Roth S, Carroll DL, Park YW, Nano Lett., 3, 839 (2003)
- Sadeghi F, Ajji A, Polym. Eng. Sci., 49(1), 200 (2009)
- Pramoda KP, Mohamed A, Phang IY, Liu T, Polym. Int., 54, 226 (2005)
- Linares A, Acosta JL, Eur. Polym. J., 31, 615 (1995)
- Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG, Nat. Mater., 2(5), 338 (2003)
- Liu L, Grunlan JC, Adv. Funct. Mater., 17(14), 2343 (2007)
- Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Nam JD, Sinh LH, Seppala J, Polymer, 52(23), 5237 (2011)
- Kim D, Kim Y, Choi K, Grunlan JC, Yu C, ACS Nano., 4, 513 (2010)
- Lin W, Zhang R, Wong CP, J. Elect. Mater., 39, 268 (2010)
- Das AL, Mukherjee R, Katiyer V, Kulkarni M, Ghatak A, Sharma A, Adv. Mater., 19(15), 1943 (2007)
- Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE, Phys. Rev. Lett., 80, 1042 (1998)