Polymer(Korea), Vol.37, No.5, 656-662, September, 2013
용액 코팅을 이용한 태양전지용 고분자 유연 패턴필름 제조
Manufacturing of Flexible Patterned Cover Film for Solar Cell by Solution Coating
E-mail:
초록
태양전지의 효율 증가를 위하여 유리비드가 함유된 polymethyl methacrylate(PMMA) 용액을 PMMA 필름 위에 코팅하여 유리비드가 코팅된 고분자 유연 패턴 필름을 제조하고 패턴 필름이 태양전지 효율에 미치는 영향을 살펴보았다. 필름 위에 코팅된 유리비드로 인하여 빛의 입사각 0도에서 90도 범위에서 태양전지의 상대효율이 최대 3.4%까지 증가함을 알 수 있었다. 이러한 효율 증가는 빛의 입사각 변화에도 필름 표면에 형성되어 있는 구 형태의 유리비드로 인하여 빛이 수직으로 입사되어 방향성에 의한 태양전지 효율 감소가 최소화되기 때문이다. 태양전지 상대효율 증가는 필름 표면 위의 유리비드가 반구의 형태를 가질 때 가장 높으며 유리비드 함량에 따라 증가되나 유리비드 함량이 너무 많은 경우, 오히려 광 투과도 감소 및 빛의 간섭 효과에 의하여 상대효율이 감소됨을 알 수 있었다.
The flexible patterned cover film was made by a simple solution coating process using polymethyl methacrylate (PMMA) solution with glass beads. The effect of patterned cover film on the efficiency of solar cell has been investigated. It was found that the relative solar cell efficiency increased up to 3.4% with the incident light angle between 0-90° by the sphere shape of glass bead coated on the film surface. This was understood that the loss of transmittance and scattering due to the light directional dependency on solar cell were minimized because the light entered glass beads normal to its surface regardless of incident light angle. The maximum relative solar cell efficiency was achieved when glass bead shape on the film is hemisphere and the relative efficiency increased with increasing the amount of glass bead on the film surface. However, too much glass beads on the film surface resulted in the lower relative solar cell efficiency due to the lowering of transmittance as well as the occurring of light interference.
- Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C, Renew. Sust. Energ. Rev., 18, 134 (2013)
- Goetzbergera A, Heblinga C, Schock H, Mater. Sci. Eng., 40, 1 (2003)
- Shirasawa K, Curr. Appl. Phys., 1, 509 (2001)
- Morales-Acevedo A, Sol. Energy Mater. Sol. Cells, 90(15), 2213 (2006)
- Romeo N, Bosio A, Canevari V, Podesta A, Sol. Energ., 77, 795 (2004)
- Anandan S, Sol. Energy Mater. Sol. Cells, 91(9), 843 (2007)
- Dai S, Weng J, Sui YF, Shi CW, Huang Y, Chen SH, Pan X, Fang XQ, Hu LH, Kong FT, Wang KJ, Sol. Energy Mater. Sol. Cells, 84(1-4), 125 (2004)
- Dennler G, Scharber MC, Brabec CJ, Adv. Mater., 21(13), 1323 (2009)
- Biana L, Zhua E, Tanga J, Tanga W, Zhangb F, Prog.Polym. Sci., 37, 1292 (2012)
- Trupke T, Shalav A, Richards BS, Wurfel P, Green MA, Sol. Energy Mater. Sol. Cells, 90(18-19), 3327 (2006)
- Kim DS, Lee EJ, Kim J, Lee SH, J. Korean Physical Society., 46, 1208 (2005)
- Zhao J, Green MA, IEEE T. Electron Dev., 38, 1925 (1991)
- Brow RK, Schmitt ML, J. Eur. Ceram. Soc., 29, 1193 (2009)
- Vicente GS, J. Sol. Energ. Eng., 011007-1, 130 (2008)
- Kennedy CE, Smilgys RV, Kirkpatrick DA, Ross JS, Thin Solid Films, 304(1-2), 303 (1997)
- Czanderna AW, Pern FJ, Sol. Energ. Mat. Sol. C., 43, 101 (1996)
- Pern FJ, Czanderna AW, Sol. Energ. Mat. Sol. C., 25, 3 (1992)
- Hamdy MA, Solar & Wind Technology., 7, 147 (1990)
- Teng TP, Nieh HM, Chen JJ, Lu YC, Renew. Energ., 35, 845 (2010)
- Elminir HK, Ghitas AE, Hamid RH, El-Hussairly F, Beheary MM, Abdel-Moneim KM, Energy Conv. Manag., 47(18-19), 3192 (2006)
- Gombert A, Glaubitt W, Rose K, Dreibholz J, Blasi B, Heinzel A, Sporn D, Doll W, Wittwer V, Sol. Energ., 68, 357 (2000)
- Chau JLH, Chen RT, Hwang GL, Tsai PY, Lin CC, Sol. Energy Mater. Sol. Cells, 94(3), 588 (2010)
- Han KS, Lee H, Kim D, Lee H, Sol. Energy Mater. Sol. Cells, 93(8), 1214 (2009)
- Hong SH, Bae BJ, Han KS, Hong EJ, Lee H, Choi KW, Electron. Mater. Lett., 5, 39 (2009)
- Bergamin L, Sammaraee T, Sol. Energ., 84, 90 (2010)
- Ye L, Zhang Y, Zhang X, Hu T, Ji R, Ding B, Jiang B, Sol. Energ. Mat. Sol. C., 111, 160 (2013)