화학공학소재연구정보센터
Combustion and Flame, Vol.160, No.8, 1499-1509, 2013
Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion
In CFD models of pulverized coal combustion, which often have complex, turbulent flows with millions of coal particles reacting, the char combustion sub-model needs to be computationally efficient. There are several common assumptions that are made in char combustion models that allow for a compact, computationally efficient model. In this work, oft used single- and double-film simplified models are described, and the temperature and carbon combustion rates predicted from these models are compared against a more accurate continuous-film model. Both the single- and double-film models include a description of the heterogeneous reactions of carbon with O-2, CO2, and H2O, along with a Thiele based description of reactant penetration. As compared to the continuous-film model, the double-film model predicts higher temperatures and carbon consumption rates, while the single-film model gives more accurate results. A single-film model is therefore preferred to a double-film model for a simplified, yet fairly accurate description of char combustion. For particles from 65 to 135 mu m, in O-2 concentrations ranging from 12 to 60 vol.%, with either CO2 or N-2 as a diluent, particle temperatures from the single-film model are expected to be accurate within 270 K, and carbon consumption rate predictions should be within 16%, with greater accuracies for a CO2 diluent and at lower bulk oxygen concentrations. A single-film model that accounts for reactant penetration and both oxidation and gasification reactions is suggested as a computationally efficient sub-model for coal char combustion that is reasonably accurate over a wide range of gas environments. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.