화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.130, No.3, 1898-1908, 2013
Water, salt water, and alkaline solution uptake in epoxy thin films
As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60 degrees C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20 degrees C and that the mass uptake profile was anomalous. Exposure to 60 degrees C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1898-1908, 2013