화학공학소재연구정보센터
Journal of Canadian Petroleum Technology, Vol.52, No.4, 266-278, 2013
Design of Caprock Integrity in Thermal Stimulation of Shallow Oil-Sands Reservoirs
Stakeholders in in-situ oil-sands development take caprock-integrity issues seriously. The industry is faced with the challenge of determining an optimal operating pressure in the reservoir where, in general, the pressure should stay significantly low to ensure the caprock integrity while being significantly high for enhanced oil production and economics. This paper presents a comprehensive work program on the subject for a shallow oil-sands play. Caprock integrity considers the induced stress and deformation in a caprock during the thermal stimulation of an oil-sands reservoir. A minifrac-test program is undertaken to define the original in-situ stress state. Laboratory tests are carried out to measure the deformation and strength properties. Simulations are run to calculate the induced stresses and evaluate them against the mechanical strength. This paper describes some important quality-control issues for these activities. For the minifrac tests, multiple cycles and use of flowback are promoted for enhanced efficiency and accuracy. Laboratory tests are recommended on whole cores in a drained condition at a slow strain rate. Numerical simulations should use site-specific and laboratory-measured material properties. On the basis of the limited sensitivity analyses, the thermal-expansion coefficient of the reservoir and Young's modulus of the caprock are found to significantly affect the caprock deformation and/or induced stresses.