화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.117, No.19, 3877-3886, 2013
Coulomb Fission in Dielectric Dication Clusters: Experiment and Theory on Steps That May Underpin the Electrospray Mechanism
A series of five molecular dication clusters, (H2O)(n)(2+), (NH3)(n)(2+), (CH3CN)(n)(2+), (C5H5N)(n)(2+), and (C6H6)(n)(2+), have been studied for the purpose of identifying patterns of behavior close to the Rayleigh instability limit where the clusters might be expected to exhibit Coulomb fission. Experiments show that the instability limit for each dication covers a range of sizes and that on a time scale of 10(-4) s ions close to the limit can undergo either Coulomb fission or neutral evaporation. The observed fission pathways exhibit considerable asymmetry in the sizes of the charged fragments, and are associated with kinetic (ejection) energies of 0.9 eV. Coulomb fission has been modeled using a theory recently formulated to describe how charged particles of dielectric materials interact with one another (Bichoutskaia et al. J. Chem. Phys. 2010, 133, 024105). The calculated electrostatic interaction energy between separating fragments accounts for the observed asymmetric fragmentation and for the magnitudes of the measured ejection energies. The close match between theory and experiment suggests that a significant fraction of excess charge resides surfaces of. the fragment ions. The experiments provided support for a fundamental step in the electrospray ionization (ESI) mechanism, namely the ejection from droplets of small solvated charge carriers. At the same time, the theory shows how water and acetonitrile may behave slightly differently as ESI solvents. However, the theory also reveals deficiencies in the point-charge image-charge model that has previously been used to quantify Coulomb fission in the electrospray process.