Journal of Physical Chemistry A, Vol.117, No.33, 7804-7809, 2013
Linear and Nonlinear Optical Properties of Expanded Porphyrins: A DMRG Study
We study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs) by the density matrix renormalization group (DMRG) technique. We employ the Pariser-Parr-Pople (PPP) Hamiltonian which includes long-range electron-electron interactions. We find that, in the 4n+2 EPs, there are two prominent low-lying one-photon excitations, while in 4n EPs, there is only one such excitation. We also find that 4n+2 EPs have large two-photon absorption cross sections compared to 4n EPs. The charge density rearrangement in the one-photon excited state is mostly at the pyrrole nitrogen site and at the meso carbon sites. In the two-photon states, the charge density rearrangement occurs mostly at the aza-ring sites. In the one-photon state, the C-C bond length in aza rings shows a tendency to become uniform. In the two-photon state, the bond distortions are on C-N bonds of the pyrrole ring and the adjoining C-C bonds which connect the pyrrole ring to the aza or meso carbon sites.