화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.25, 7685-7694, 2013
Water Permeation Through a Charged Channel
Transport properties of, water molecules through hydrophobic channels have been explored extensively in recent years; however, our knowledge about the transport properties of hydrophilic channels is still rather poor. Herein, we use molecular dynamics simulations to study the permeation of water molecules through a charged channel. For comparison, we first consider the pristine hydrophobic channel without charge, and we find an analytic expression that can predict the water flow through it. For uniformly charged channels, with the increase of charge density, the water flow decreases, due to the increase of roughness in the free energy profile experienced by a water molecule along the channel; while, the ion flow exhibits a maximum, because of the competition between the increasing ion number and ion-channel attraction. Surprisingly, the water occupancy for positive and negative channels varies in the opposite direction, which is strongly related to the excluded volume effect of ions. Additionally, we also discuss the effect of surface charge patterns and channel sizes. These results not only enrich our understanding of the transport properties of hydrophilic channels, but also have deep implications for the design of nanometer water gates.