- Previous Article
- Next Article
- Table of Contents
Journal of Process Control, Vol.23, No.6, 793-804, 2013
Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
Multi-grade processes have played an important role in the fine chemical and polymer industries. An integrated nonlinear soft sensor modeling method is proposed for online quality prediction of multi-grade processes. Several single least squares support vector regression (LSSVR) models are first built for each product grade. For online prediction of a new sample, a probabilistic analysis approach using the statistical property of steady-state grades is presented. The prediction can then be obtained using the corresponding LSSVR model if its probability of the special steady-state grade is large enough. Otherwise, the query sample is considered located in the transitional mode because it is not similar to any steady-state grade. In this situation, a just-in-time LSSVR (JLSSVR) model is constructed using the most similar samples around it. To improve the efficiency of searching for similar samples of JLSSVR, a strategy combined with the characteristics of multi-grade processes is proposed. Additionally, the similarity factor and similar samples of JLSSVR can be determined adaptively using a fast cross-validation strategy with low computational load. The superiority of the proposed soft sensor is first demonstrated through a simulation example. It is also compared with other soft sensors in terms of online prediction of melt index in an industrial plant in Taiwan. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Just-in-time learning;Least squares support vector regression;Multi-grade process;Probabilistic analysis;Transition