화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.3, 509-516, June, 1994
니켈촉매에 의한 크로톤 알데히드의 액상 수소첨가반응
Liquid Phase Hydrogenation of Croton Aldehyde with Nickel Catalysts
초록
에탄올의 제조시 불순물로서 미량 생성되는 크로톤 알데히드를 수소와 반응시켜 n-부틸알콜로 전환하여 불포화 탄화수소를 제거하는 공정에 액상수소 첨가반응을 이용하고자 하며, 기존의 기상 수소첨가반응보다 월등한 에너지 절약 효과가 있다. 반응촉매는 내구성 및 가격 등 경제적인 측면을 고려하여 니켈촉매를 선택하였으며, 반응전화율의 측정은 PMT(permanganate time) test 방법을 적용하였다. PMT는 에탄올에 미량으로 함유되어 있는 크로톤알데히드의 초기농도 증가에 따라 급격히 감소하였으며, 크로톤 알데히드로부터 n-부틸알콜로의 수첨반응은 탄소-탄소 이중결합의 환원 후, 알데히드의 환원 과정이 연속적으로 일어나고, 각 반응단계는 0차 반응속도 상수를 가진다. 실험조건 범위 내에서는 반응 온도가 높을수록, LHSV가 느릴수록 PMT는 길어지고, 반응압력은 PMT와 거의 무관함을 보였다.
Liquid phase hydrogenation come into use for the removal process of unsaturated hydrocarbon such as croton aldehyde. The croton aldehyde is generated in a very small amount as by-product in the ethanol production, and it is converted into n-butanol through hydrogenation. Liquid phase hydrogenation is low energy consumption process as compared with gas phase hydrogenation. The nickel catalyst is selected with respect to the economic aspect such as durability and cost. The analysis of the conversion were performed by method of the PMT(permangante time) test. The PMT was sharply decreased as the initial concentrations of croton aldehyde in the ethanol solution were increased. The hydrogenation of croton aldehyde to n-butanol was carried out in sequence after the saturation of the carbon-carbon double bond. The formation of both butyraldehyde and n-butanol followed zero order kinetics. Within expermental conditions the PMT gets longer as reaction temperature goes higer and as LHSV becomes slower, while the reaction pressure has almost no relation with PMT.
  1. Satterfield CN, "Heterogeneous Catalysis in Practice," McGraw-Hill, U.S.A., 4-7 (1980)
  2. Maycock RL, U.S. Patent, 23,507 (1952)
  3. Kosinka J, Prabucki A, Schuerch A, Chem. Eng. Sci., 34, 1051 (1979) 
  4. Marcelln G, Vogel RF, Swift HE, Ind. Eng. Chem. Prod. Res. Dev., 23, 41 (1984) 
  5. Krishnaiah D, Sarkar S, J. Am. Oil Chem. Soc., 67, 233 (1990)
  6. Marangozis J, Keramidas OB, Paparisvas G, Ind. Eng. Chem. Process Des. Dev., 16, 361 (1977)
  7. Kawakami K, Kusunoki K, J. Chem. Eng. Jpn., 9, 469 (1976)
  8. Mochizuki S, Matsui T, AIChE J., 22, 904 (1976) 
  9. Chaudhari RV, Jaganathan R, Kolhe DS, Emig G, Hofmann H, Chem. Eng. Sci., 41, 3073 (1986) 
  10. Smedler G, Can. J. Chem. Eng., 67, 51 (1989)
  11. Othmer K, Encyclopedia of Chemical Technology, 1, 106 (1978)
  12. Carle TC, Chem. Ind., 19, 830 (1962)
  13. Collina DJ, Grimes DE, Davis BH, Can. J. Chem. Eng., 61, 36 (1983)
  14. Sousa-Aguiar EF, Schmal M, Ibero Am. Catal. Congr., La Plata, Argentina, 159-165 (1980)
  15. Bond GC, "Catalysis by Metals," Academic Press, New York, 125-130, 240-244 (1962)
  16. Smith JM, Chen SY, McCoy BJ, AIChE J., 32, 2056 (1986) 
  17. Filikov AV, Myasoedov NF, J. Phys. Chem., 93, 2502 (1989) 
  18. Magnusson J, Ind. Eng. Chem. Res., 26, 874 (1987) 
  19. 국세청기술연구소, "주류분석규정," 13-11 유기불순물, 209 (1978)
  20. Perlman J, Dankberg FL, Strauss LL, "Encyclopedia of Polymer Science and Technology,", 1, 609 (1974)