화학공학소재연구정보센터
Macromolecules, Vol.46, No.10, 4215-4222, 2013
Changes in Nanoassembly of Oligocaprolactone End-Capped Pluronic F127 and the Abnormal Hydrophobicity Trend of Phase Transition
Compared with unmodified F127, the concentration range exhibiting sol-gel transition increased for the CL4-F127-CL4 (F-CL4); however, it decreased for the CL12-F127-CL12 (F-CL12), even though both F-CL4 and F-CL12 were hydrophobically modified by the oligocaprolactone (OCL). To understand the abnormal behavior of the OCL end capped F127, the difference in basic nanoassemblies among the F127, F-CL4, and F-CL12 were investigated at a low concentration of 0.10 wt % as well as at high concentrations exhibiting sol-gel transitions. Dynamic mechanical analysis, C-13 NMR spectroscopy, hydrophobic dye solubilization, dynamic light scattering, microcalorimetry, and transmission electron microscopy suggested that F127's undergo a unimer-to-micelle transition, whereas F-CL4's undergo unimer-to-vesicle transition as the temperature increased On the other hand, F-CL12's with relatively large end capped OCL formed aggregated micelle structures that undergo temperature sensitive conformation changes. In addition, as the temperature increased, sol-to-gel-to-syneresis and gel-to-sol-to-gel-to-syneresis transitions were observed for F-CIA and F-CL12 aqueous solutions, respectively, whereas a sol-to-gel-to-sol transition was observed for Pluronic F127 aqueous solution. The findings suggest that the end capping of F127 by OCL induces changes in nanoassemblies, which play a key role in different physicochemical properties leading to the abnormal phase behavior.