Rheologica Acta, Vol.52, No.6, 557-577, 2013
Kinetic theory of colloidal suspensions: morphology, rheology, and migration
Smoluchowski kinetic equation governing the time evolution of the pair correlation function of rigid sphericalparticles suspended in a Newtonian fluid is extended to include particle migration. The extended kinetic equation takes into account three types of forces acting on the suspended particles: a direct force generated by an interparticle potential, hydrodynamic force mediated by the host fluid, and the Fax,n-type forces bringing about the across-the-streamline particle migration. For suspensions subjected to externally imposed flows, the kinetic equation is solved numerically by the proper generalized decomposition method. The imposed flow investigated inthe numerical illustrations is the Poiseuille flow. Numerical solutions provide the morphology (the pair correlation function), the rheology (the stress tensor), and the particle migration.