Nature Materials, Vol.8, No.5, 421-426, 2009
Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics
Discotic liquid crystals are a promising class of materials for molecular electronics thanks to their self-organization and charge transporting properties. The best discotics so far are built around the coronene unit and possess six-fold symmetry. In the discotic phase six-fold-symmetric molecules stack with an average twist of 30 degrees, whereas the angle that would lead to the greatest electronic coupling is 60 degrees. Here, a molecule with three-fold symmetry and alternating hydrophilic/hydrophobic side chains is synthesized and X-ray scattering is used to prove the formation of the desired helical microstructure. Time-resolved microwave-conductivity measurements show that the material has indeed a very high mobility, 0 : 2 cm(2) V(-1)s(-1). The assemblies of molecules are simulated using molecular dynamics, confirming the model deduced from X-ray scattering. The simulated structures, together with quantum-chemical techniques, prove that mobility is still limited by structural defects and that a defect-free assembly could lead to mobilities in excess of 10 cm(2) V(-1)s(-1).