화학공학소재연구정보센터
Nature Materials, Vol.9, No.10, 816-820, 2010
Molecular manipulator driven by spatial variation of liquid-crystalline order
Collective long-range interactions between micrometre-sized impurities in liquid crystals result from the elastic distortion of the liquid-crystalline order1-8. For substantially smaller polymeric impurities, what is relevant is not the elastic interaction between them but the coupling between the scalar nematic order parameter S and the polymer concentration phi. This coupling originates from local molecular interactions, but becomes long ranged because the total polymer concentration is conserved over the whole sample. Here, we propose a new mechanism by which the spatial variation of S generates a force, mediated by the coupling between S and phi, that transports nanoscale polymeric impurities. We have designed a prototype of a molecular manipulator that moves molecules along spatial variations of the scalar order parameter, modulated in a controlled manner by spot illumination of an azobenzene-doped nematic phase with ultraviolet light. We also demonstrate the use of the manipulator for the measurement of the anisotropic diffusion constant of a polymer in the nematic phase. The manipulator can control the spatial variation of the polymer concentration, thus showing promise for use in the design of hybrid soft materials.