화학공학소재연구정보센터
Nature Materials, Vol.10, No.10, 733-736, 2011
Evolution and control of oxygen order in a cuprate superconductor
The disposition of defects in metal oxides is a key attribute exploited for applications from fuel cells and catalysts to superconducting devices and memristors. The most typical defects are mobile excess oxygens and oxygen vacancies, which can be manipulated by a variety of thermal protocols as well as optical and d.c. electric fields. Here we report the X-ray writing of high-quality superconducting regions, derived from defect ordering(1), in the superoxygenated layered cuprate, La2CuO4+y. Irradiation of a poor superconductor prepared by rapid thermal quenching results first in the growth of ordered regions, with an enhancement of superconductivity becoming visible only after a waiting time, as is characteristic of other systems such as ferroelectrics(2,3), where strain must be accommodated for order to become extended. However, in La2CuO4+y, we are able to resolve all aspects of the growth of (oxygen) intercalant order, including an extraordinary excursion from low to high and back to low anisotropy of the ordered regions. We can also clearly associate the onset of high-quality superconductivity with defect ordering in two dimensions. Additional experiments with small beams demonstrate a photoresist-free, single-step strategy for writing functional materials.