Nature Materials, Vol.12, No.5, 433-438, 2013
Revisiting the delta-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films
Ferroelectric poly(vinylidene-fluoride) (PVDF) has, in the past, been proposed as an ideal candidate for data storage applications as it exhibits a bistable, remanent, polarization that can repeatedly be switched by an electric field. However, fabrication of smooth ferroelectric PVDF thin films, as required for microelectronic applications, is a long-standing problem. At present, the copolymer of PVDF with trifluoroethylene P(VDF-TrFE) is used, but the stack integrity and the limited thermal stability of its remanent polarization hamper large-scale integration. Here we show that smooth neat PVDF films can be made at elevated substrate temperature. On applying a short electrical pulse the ferroelectric polar delta-phase is formed, an overlooked polymorph of PVDF proposed 30 years ago, but never experimentally verified. The remanent polarization and coercive field are comparable to those of the copolymer. The enhanced thermal stability of the polarization is directly related to the high Curie temperature, whereas the ferroelectric properties are related to the molecular packing as derived from the refined crystal structure. The replacement of P(VDF-TrFE) by the commodity polymer PVDF may boost large-scale industrial applications.