화학공학소재연구정보센터
Nature Materials, Vol.3, No.9, 651-656, 2004
Silica films with a single-crystalline mesoporous structure
Films of mesoporous materials attract broad interest because of their wide applicability in the fields of optics and electronics. Although many of these films have a regular local porous structure, the structural regularity has not been used practically yet because of difficulties in its control on macroscopic scales. Here, we demonstrate the preparation of mesoporous silica films whose porous structure can be described as a single crystal, that is, a long-range order of cage-like pores is maintained over centimetre scales. These films have a three-dimensional hexagonal (space group P6(3)/mmc) porous structure, and the in-plane arrangement of the pores is strictly controlled by a polymeric substrate surface that has been treated by rubbing. This new class of single-crystalline films with mesoscopic periodic structure is a significant breakthrough in bottom-up nanotechnology, and could lead to novel devices, for example, optics in a soft X-ray region, and quantum electronics.