화학공학소재연구정보센터
Clean Technology, Vol.19, No.3, 300-305, September, 2013
Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption
E-mail:
초록
ZnO(산화아연)와 rGO(환원 흑연산화물, reduced graphite oxide)로 구성된 복합체를 제조하여 중저온 영역(300-500 ℃)에서 H2S(황화수소) 흡착실험을 수행하였다. rGO에 붙어있는 수산화기, 에폭시기, 그리고 카르복실기와 같은 산소를 포함하는 관능기들이 H2S흡착에 미치는 영향을 조사하기 위해서 다양한 특성분석(TGA, XRD, FT-IR, SEM, 그리고 XPS)을 실시하였다. GO(흑연산화물, graphite oxide)를 rGO로 환원시키기 위해서 마이크로파 조사법을 사용하였다. 마이크로파 조사법에 의한 환원공정에서는 온화한 환원분위기를 조성하여 rGO 표면에 상당량의 산소 관능기들이 남아있는 것을 확인하였다. 이러한 관능기들은 나노 크기의 ZnO가 2D rGO 표면에 균일하게 부착되도록 유도하여 고온 영역에서도 ZnO의 응집 및 소결이 일어나는 것을 방지하는 효과가 있다. 이로 인해 ZnO/rGO 복합체는 순수한 ZnO와 비교하여 3.5배 정도의 흡착량을 보여주었다.
Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide (H2S) adsorption at mid-to-high (300 to 500 ℃) temperatures. In order to investigate the critical roles of oxygen containing functional groups, such as hydroxyl, epoxy and carboxyl groups, attached on rGO surface for the H2S adsorption, various characterization methods (TGA, XRD, FT-IR, SEM and XPS) were conducted. For the reduction process for graphite oxide (GO) to rGO, a microwave irradiation method was used, and it provided a mild reduction environment which can remain substantial amount of oxygen functional groups on rGO surface. Those functional groups were anchoring and holding nano-sized ZnO onto the 2D rGO surface; and it prevented the aggregation effect on the ZnO particles even at high temperature ranges. Therefore, the H2S adsorption capacity had been increased about 3.5 times than the pure ZnO.
  1. Rodriguez JA, Maiti A, J. Phys. Chem. B, 104(15), 3630 (2000)
  2. Samokhvalov A, Tatarchuk BJ, Phys. Chem. Chem.Phys., 13, 3197 (2011)
  3. Garcia CL, Lercher JA, J. Phys. Chem., 96, 2230 (1992)
  4. Karge HG, Janos R, J. Colloid Interface Sci., 64, 522 (1978)
  5. Wakker JP, Gerritsen AW, Moulijn JA, Ind. Eng. Chem. Res., 32, 139 (1993)
  6. Ko TH, Chu H, Chaung LK, Chemosphere., 58, 467 (2005)
  7. Dhage P, Samokhvalov A, Repala D, Duin EC, Bowman M, Tatarchuk BJ, Ind. Eng. Chem. Res., 49(18), 8388 (2010)
  8. Twigg MV, Spencer MS, Top. Catal., 22, 191 (2003)
  9. Lew S, Jothimurugesan K, Flytzani-Stephanopoulos M, Ind. Eng.Chem. Res., 28, 535 (1989)
  10. Kong XY, Ding Y, Wang ZL, J. Phys. Chem. B, 108(2), 570 (2004)
  11. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593 (2009)
  12. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  13. Li N, Liu G, Zhen C, Li F, Zhang LL, Cheng HM, Adv. Funct. Mater., 21(9), 1717 (2011)
  14. Lee JK, Smith KB, Hayner CM, Kung HH, Chem. Commun., 46, 2025 (2010)
  15. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 332(6037), 1537 (2011)
  16. Seredych M, Bandosz TJ, Chem. Eng. J., 166(3), 1032 (2011)
  17. Seredych M, Mabayoje O, Bandosz TJ, Langmuir, 28(2), 1337 (2012)
  18. Seredych M, Mabayoje O, Kolesnik MM, Krstic V, Bandosz TJ, J. Mater. Chem., 22, 7970 (2012)
  19. Yang ST, Chang YL, Wang HF, Liu GB, Chen S, Wang YW, Liu YF, Cao AN, J. Colloid Interface Sci., 351(1), 122 (2010)
  20. Chandra V, Park J, Chun Y, Lee JW, Hwang I, Kim KS, ACS Nano., 4, 3979 (2010)
  21. Petit C, Seredych M, Bandosz TJ, J. Mater. Chem., 19, 9176 (2009)
  22. Mabayoje O, Seredych M, Bandosz TJ, ACS Appl. Mater. Interfaces., 4, 3316 (2012)
  23. Song HS, Ko CH, Ahn W, Kim BJ, Croiset E, Chen ZW, Nam SC, Ind. Eng. Chem. Res., 51(30), 10259 (2012)
  24. Wu S, Yin Z, He Q, Lu G, Yan Q, Zhang H, J. Phys. Chem. C., 115, 15973 (2011)
  25. Algdal J, Balasubramanian T, Breitholtz M, Kihlgren T, Wallden L, Surf. Sci., 601, 1167 (2007)
  26. Song HS, Park MG, Croiset E, Chen Z, Nam, SC, Ryu HJ, Yi KB, Appl. Surf. Sci., 280, 360 (2013)
  27. Lu T, Pan L, Li H, Zhu G, Lv T, Liu X, Sun Z, Chen T, Chua DHC, J. Alloys. Compd., 509, 5488 (2011)